
  1  

GEU 

 

  

  

 

  

DataBase Management Systems Lecture 

Notes 

 

 

 

  
  

 

 

 

 

UNIT-1  

  

 Data:  

It is a collection of information.  
The facts that can be recorded and which have implicit meaning known as 'data'. Example:  

                 Customer  ----- 1.cname.  
                 2.cno.  
                 3.ccity.  

Database:  

It is a collection of interrelated data.  
These can be stored in the form of tables.  
A database can be of any size and varying complexity.  
A database may be generated and manipulated manually or it may be computerized.  

Example:  

 Customer database consists the fields as cname, cno, and ccity  

  

Cname  Cno  Ccity  

  
  

  
  
  
  



  2  

GEU 

 

      

  

Database System:   

 It is computerized system, whose overall purpose is to maintain the information and to make that the 

information is available on demand.  

  

 Advantages:  

      1.Redundency can be reduced.  
     2.Inconsistency can be avoided.  
     3.Data can be shared.  
     4.Standards can be enforced.  
     5.Security restrictions can be applied.  
     6.Integrity can be maintained.  
     7.Data gathering can be possible.  
     8.Requirements can be balanced.  

  

 Database Management System (DBMS):  
It is a collection of programs that enables user to create and maintain a database. In other words it is general-purpose 

software that provides the users with the processes of defining, constructing and manipulating the database for 

various applications.  
Disadvantages in File Processing  

   Data redundancy and inconsistency.  

   Difficult in accessing data.  

   Data isolation.  

   Data integrity.  

   Concurrent access is not possible.  

   Security Problems.  

.  

  

 Advantages of DBMS:  

1.Data Independence.  
2.Efficient Data Access.  
3.Data Integrity and security.  
4.Data administration.  
5.Concurrent access and Crash recovery.  
6.Reduced Application Development Time.  

  

Applications  
Database Applications:  
Banking: all transactions  
Airlines: reservations, schedules  
Universities:  registration, grades  
Sales: customers, products, purchases  
Online retailers: order tracking, customized recommendations  
Manufacturing: production, inventory, orders, supply chain Human 

resources:  employee records, salaries, tax deductions  

  
  

People who deal with databases  

  

  
  
  
  
  
  
  



  3  

GEU 

 

 Many persons are involved in the design, use and maintenance of any database. These persons can be classified into 

2 types as below.  

  

 Actors on the scene:  

The people, whose jobs involve the day-to-day use of a database are called as 'Actors on the scene',  
listed as below.  

  

1.Database Administrators (DBA):  

  

The DBA is responsible for authorizing access to the database, for  
Coordinating and monitoring its use and for acquiring software and hardware resources as needed. 

These are the people, who maintain and design the database daily. DBA is responsible for the following 

issues.  

  

a. Design of the conceptual and physical schemas:  

The DBA is responsible for interacting with the users of the system to understand what data is to 

be stored in the DBMS and how it is likely to be used.  
The DBA creates the original schema by writing a set of  definitions and is    Permanently 

stored in the 'Data Dictionary'.  
b. Security and Authorization:  

The DBA is responsible for ensuring the unauthorized data access is not permitted.  
The granting of different types of authorization allows the DBA to regulate which parts of the 

database various users can access.  

  

c. Storage structure and Access method definition:  

The DBA creates appropriate storage structures and access methods   
by writing a set of definitions, which are translated by the DDL compiler.  

  

d. Data Availability and Recovery from Failures:  

The DBA must take steps to ensure that if the system fails, users can continue to access as much 

of the uncorrupted data as possible.  
The DBA also work to restore the data to consistent state.  

  

e. Database Tuning:  

The DBA is responsible for modifying the database to ensure adequate  Performance 

as requirements change.  

  

f. Integrity Constraint Specification:  

The integrity constraints are kept in a special system structure that is consulted by the DBA 

whenever an update takes place in the system.  

  

2.Database Designers:  

Database designers are responsible for identifying the data to be stored in the database and for choosing appropriate 

structures to represent and store this data.  

  

3. End Users:  

People who wish to store and use data in a database.  
End users are the people whose jobs require access to the database for querying, updating and generating reports, 

listed as below.  

  

a. Casual End users:  

These people occasionally access the database, but they may need   different information each 

time.  



  4  

GEU 

 

  

b. Naive or Parametric End Users:  

Their job function revolves around constantly querying and updating the database using standard 

types of queries and updates.  

  

c. Sophisticated End Users:  

These include Engineers, Scientists, Business analyst and others familiarize to implement their 

applications to meet their complex requirements.  

  

d. Stand alone End users:  

These people maintain personal databases by using ready-made program packages that provide 

easy to use menu based interfaces.  

  

4.System Analyst:  
These people determine the requirements of end users and develop specifications for transactions.  

  

5.Application Programmers (Software Engineers):  

These people can test, debug, document and maintain the specified transactions.   

  

b. Workers behind the scene:  

Database Designers and Implementers:  

These people who design and implement the DBMS modules and interfaces as a software package.  

  

2.Tool Developers:  

Include persons who design and implement tools consisting the packages for design, performance monitoring, and 

prototyping and test data generation.  

  

3.Operators and maintenance personnel:  

These re the system administration personnel who are responsible for the actual running and maintenance of the 

hardware and software environment for the database system.  

  

3.LEVELS OF DATA ABSTRACTION  

  This is also called as 'The Three-Schema Architecture’, which can be used to separate the user applications 

and the physical database.  

  

1.Physical Level:  

This is a lowest level, which describes how the data is actually stores.  
Example:   

Customer account database can be described.  

  

2.Logical Level:  

This is next higher level that describes what data and what relationships in the database.   
Example:       Each record  type customer = record 

cust_name: sting; cust_city: string; 

cust_street: string;  
end;  

  

3.Conceptual (view) Level:  

This is a lowest level, which describes entire database.  
Example:   

All application programs.  
4.DATA MODELS  



  5  

GEU 

 

  

The entire structure of a database can be described using a data model. 

A data model is a collection of conceptual tools for describing Data 

models can be classified into following types.  
1.Object Based Logical Models.  
2.Record Based Logical Models.  
3.Physical Models.  

Explanation is as below.  

  

1.Object Based Logical Models:  

These models can be used in describing the data at the logical and view levels.  
These models are having flexible structuring capabilities classified into following types. a) 

The entity-relationship model.  
b) The object-oriented model.  
c) The semantic data model.  
d) The functional data model.  

  

2.Record Based Logical Models:  

These models can also be used in describing the data at the logical and view levels.  
These models can be used for both to specify the overall logical structure of the database and a higher-level description.  
These models can be classified into,  

1. Relational model.  
2. Network model.  
3. Hierarchal model.  

  

3. Physical Models:  
These models can be used in describing the data at the lowest level, i.e. physical level.  
These models can be classified into  

1. Unifying model  
2. Frame memory model.  

  

  

                                                              UNIT-2  
  

  

History of Database Systems  
1950s and early 1960s:  

➢ Data processing using magnetic tapes for storage  

 Tapes provide only sequential access  

➢ Punched cards for input Late 1960s and 1970s:  
➢ Hard disks allow direct access to data  
➢ Network and hierarchical data models in widespread use  
➢ Ted Codd defines the relational data model  

 Would win the ACM Turing Award for this work  

 IBM Research begins System R prototype  

 UC Berkeley begins Ingres prototype  

➢ High-performance (for the era) transaction processing  

  

1980s:  
➢ Research relational prototypes evolve into commercial systems  

 SQL becomes industrial standard  



  6  

GEU 

 

➢ Parallel and distributed database systems  
➢ Object-oriented database systems 1990s:  
➢ Large decision support and data-mining applications  
➢ Large multi-terabyte data warehouses  
➢ Emergence of Web commerce 2000s:  
➢ XML and XQuery standards  
➢ Automated database administration  

  

Entity Relational Model (E-R Model)  

                     The E-R model can be used to describe the data involved in a real world enterprise in terms of objects 

and their relationships.  
Uses:  

These models can be used in database design.  
It provides useful concepts that allow us to move from an informal    description 

to precise description.  
This model was developed to facilitate database design by allowing the specification of overall logical structure 

of a database.  
It is extremely useful in mapping the meanings and interactions of real world enterprises onto a conceptual schema.  
These models can be used for the conceptual design of database  applications.  

  

      1. OVERVIEW OF DATABSE DESIGN  

The problem of database design is stated as below.  
'Design the logical and physical structure of 1 or more databases to accommodate the information needs of the 

users in an organization for a defined set of applications'.  
The goals database designs are as below.  
1.Satisfy the information content requirements of the specified users     and 

applications.  
2.Provide a natural and easy to understand structuring of the    information.  

          3.Support processing requirements and any performance objectives  such 

as 'response time, processing time, storage space etc..  

  

ER model consists the following 3 steps.  

  

a. Requirements Collection and Analysis:  

This is the first step in designing any database application.  
This is an informal process that involves discussions and studies and analyzing the expectations of the users 

& the intended uses of the database.  
Under this, we have to understand the following.   

1.What data is to be stored n a database?  
2.What applications must be built?  
3.What operations can be used?   

Example:   

             For customer database, data is cust-name, cust-city, and cust-no.  

   

b. Conceptual database design:  

The information gathered in the requirements analysis step is used to develop a higher-level description of the 

data.  
The goal of conceptual database design is a complete understanding of the database structure, meaning 

(semantics), inter-relationships and constraints.  

  

Characteristics of this phase are as below.  

  

  1.Expressiveness:  



  7  

GEU 

 

 The data model should be expressive to distinguish different types of data, relationships and constraints.  

  

  2.Simplicity and Understandability:  

    The model should be simple to understand the concepts.  

  

  3.Minimality:  

    The model should have small number of basic concepts.  
  4.Diagrammatic Representation:  

The model should have a diagrammatic notation for displaying the conceptual schema.  
  5.Formality:  

  A conceptual schema expressed in the data model must represent a formal specification of the data. Example:   
                         Cust_name : string;   
                         Cust_no      : integer;   
                         Cust_city    : string;  

  

c. Logical Database Design:  

  

  

Under this, we must choose a DBMS to implement our database design and convert the conceptual database 

design into a database schema.  
The choice of DBMS is governed by number of factors as below.  

    1.Economic Factors.  
  2.Organizational Factors.  Explanation is as below.   
1.Economic Factors:  

  

These factors consist of the financial status of the applications. a. 

Software Acquisition Cost:  
  This consists buying the software including language options such as forms, menu, recovery/backup options, web 

based graphic user interface (GUI) tools and documentation.  

  

b. Maintenance Cost:  

 This is the cost of receiving standard maintenance service from the vendor and for keeping the DBMS version up to 

date.  

  

c. Hardware Acquisition Cost:  

  This is the cost of additional memory, disk drives, controllers and a specialized DBMS storage.  

  

d. Database Creation and Conversion Cost:  

 This is the cost of creating the database system from scratch and converting an existing system to the new DBMS 

software. e. Personal Cost:  
  This is the cost of re-organization of the data processing department. f. 

Training Cost:  
`  This is the cost of training for Programming, Application Development and Database Administration.  

  

g. Operating Cost:  

  The cost of continued operation of the database system.  

  

2.Organizational Factors:  
These factors support the organization of the vendor, can be listed as below. a. 

Data Complexity:  
    Need of a DBMS.  
b. Sharing among applications:  



  8  

GEU 

 

 The greater the sharing among applications, the more the redundancy among files and hence the greater the need for 

a DBMS.  
c. Dynamically evolving or growing data:  

  If the data changes constantly, it is easier to cope with these changes using   a DBMS than using a file system.  
d. Frequency of ad hoc requests for data:  

  File systems are not suitable for ad hoc retrieval of data. e. 

Data Volume and Need for Control:  
  These 2 factors needs for a DBMS.  

Example:   

                   Customer database can be represented in the form of tables  or diagrams.  

  

3. Schema Refinement:  

Under this, we have to analyze the collection of relations in our relational database schema to identify the 

potential problems.  

  

4.Physical Database Design:  

 Physical database design is the process of choosing specific storage structures and access paths for the database 

files to achieve good performance for the various database applications.  
This step involves building indexes on some tables and clustering some tables.  
The physical database design can have the following options.  

  1.Response Time:  

    This is the elapsed time between submitting a database transaction for execution and receiving a 

response.  
  2.Space Utilization:  

  This is the amount of storage space used by the database files and their access path structures on disk including 

indexes and other access paths.  
3.Transaction Throughput:  

    This is the average number of transactions that can be processed per minute.  
5. Security Design:  

In this step, we must identify different user groups and different roles played by various users.  
For each role, and user group, we must identify the parts of the database that they must be able to access, 

which are as below.  

          

2.ENTITIES  

  

  

1. It is a collection of objects.  
2. An entity is an object that is distinguishable from other objects by a set of attributes.  
3. This is the basic object of E-R Model, which is a 'thing' in the real world with an independent existence.  
4. An entity may be an 'object' with a physical existence.  
5. Entities can be represented by 'Ellipses'. Example:  

i. Customer, account etc.  

  

     3. ATTRIBUTES  
Characteristics of an entity are called as an attribute.  
The properties of a particular entity are called as attributes of that specified entity. Example:  
                  Name, street_address, city   --- customer database.                   

Acc-no, balance   --- account database.  

  Types:  

  These can be classified into following types.  

  

1.Simple Attributes.  

  
  
  



  9  

GEU 

 

2.Composite Attributes.  
3.Single Valued Attributes.  
4.Mutivalued Attributes.  
5.Stored Attributes.  
6.Derived Attributes.  
Explanation is as below.  

  

1.Simple Attributes:  

The attributes that are not divisible are called as 'simple or atomic attributes'. 

Example:   cust_name, acc_no etc..  

  

2.Composite Attributes:  

  

The attributes that can be divided into smaller subparts, which represent more basic attributes with independent 

meaning.  
These are useful to model situations in which a user sometimes refers to the composite attribute as unit but at 

other times refers specifically to its components. Example:  

  

    Street_address can be divided into 3 simple attributes as Number, Street and Apartment_no.   
      Street_address  

  

  

  City  Zip  

  

3.Single Valued Attribute:  

The attributes having a single value for a particular entity are called as 'Single Valued Attributes'. Example:  
    'Age' is a single valued attribute of 'Person'.  
4.Muti Valued Attribute:  

The attributes, which are having a set of values for the same entity, are called as 'Multi Valued Attributes'. 

Example:  
  A 'College Degree' attribute for a person.i.e, one person may not have a college degree, another person may have one 

and a third person may have 2 or more degrees.  
A multi-valued attribute may have lower and upper bounds on the number of values allowed for each 

individual entity.  

  

5.Derived Attributes:  

An attribute which is derived from another attribute is called as a ‘derived attribute.  
Example: ‘Age’ attribute is derived from another attribute 

‘Date’.  

  

6.Stored Attribute:  

An attribute which is not derived from another attribute is called as a ‘stored attribute. Example:  

In the above example,’ Date’ is a stored attribute.  

      

4. ENTITY SETS  

Entity Type:  

A collection entities that have the same attributes is called as an 'entity type'. Each 

entity type is described by its name and attributes.  

  

Entity Set:  

Collection of all entities of a particular entity type in the database at any point of time is called as an entity set.  
The entity set is usually referred to using the same name as the entity type.  

  State      



  10  

GEU 

 

An entity type is represented in ER diagrams as a rectangular box enclosing the entity type name. Example:  
                    Collection of customers.  

  

5. Relationships  

  

It is an association among entities.  

  

6. Relationship Sets  

  

It is a collection of relationships.  
Primary Key:  

The attribute, which can be used to identify the specified information from the tables.  

  

Weak Entity:  

A weak entity can be identified uniquely by considering some of its attributes in conjunction with the primary key of 

another entity.  
The symbols that can be used in this model are as follows.  

  

1.Rectangles  ----  

  

  

2.Ellipses   -----  

  

3.Lines    ------       

  

  

4.Diamonds   -----                                Relationships.  

  

  

5.Under Lined Ellipse  -----                                       Primary key.  
             Key Attribute.  

  

6.Doubled Lined Ellipse  ----                                        Multi Valued Attribute.  

  

  

7.Dashed Ellipse    ----                                       Derived Attributes.  

  

  

8.Double Lined Rectangle   ----                      k Entity Set.  

  

  

  

9.Double Lined Diamond   ----                         ----   Weak Entity Relationship.  
      Identifying Relationship.  

      

  

  

  

10. Entity Set having a Primary Key    -- --                                           Strong Entity   
       Set.  

  

         ----  

Wea  

 

    ___     Entities.   

   ------     Attributes.   

     ------       Links.   

    
      

      



  11  

GEU 

 

   

.Cylinder      11 ----                            ----      Database.   
  
  
12 .Curved Inside Rectangle      ----                              ---                           End Users.       
  
EXAMPLE:   
  
  

    
  
  
  
  
  
    
Descriptive Attributes:   

  A relationship can also have some attributes, which are called a s ‘descriptive attributes’.   
  These are used to record information about the relationship.   

  Example:   

James of ‘Employees’ entity set works in a department since 1991.   
  
  
  
  
  
  
  
  
  

Instance:   
  An instance of a relationship set is a set of relationships.   
  It is a s napshot of the relationship at some instant of time.   
  EX:   

  
  

1111   

2222   

3333   

91 /1/ 1   

9 /2/ 2 4   
  96 /3/ 3   

60   

70   

80   

Name   

  

Street   
City   

Customer   
Cust_acc   

Account   

Acc_no   Balance   

Works_in   Departments   

Since   
Dno   

Dname   

Budget   

Name   

  
Street   

City   

Customer   



  12  

GEU 

 

  

Ternary Relationship:  

  

A relationship set, which is having 3 entity sets, is called as a ternary relationship.  

  

7.Additional Features of the E-R Model  

  

1.Key Constraints:  
These can be classified into 4 types as below.  
1.Many to Many:  

An employee is allowed to work in different departments and a department is allowed to have several 

employees.   

 
1 employee can be associated with many departments, where as each department can be associated with at 

most 1 employee as its manager.  

 
3.Many to One:  

Each employee works in at most 1 department.i.e, many employees can work in same department.  

 
  

  Each employee can manage at most 1 department.  

  
  
  
  
  
  
  
  

  
  : .One to Many 2   

Works_in   Depa rtments   

Since   
Dno   

Dname   

Budget   

Name   
  

Street   
City   

Customer   

  
  
  
  
  
  
  
  
  
  

Works_in   Departments   

Since   
Dno   

Dname   

Budget   

Name   
  

Street   
City   

Customer   

  
  
  
  
  
  
  
  
  

: .One to One 4   

Works_in   Departments   

Since   
Dno   

Dname   

Budget   

Name   
  

Street   
City   

Customer   



  13  

GEU 

 

 
  

The participation constraint specifies whether the existence of an entity depends on its being related to another 

entity via the relationship type.  
A department has at most one manager. This requirement is an example of participation constraints. There 

are 2 types of participation constraints, which are as below.  

  

1.Total.  
2.Partial.  

  Explanation is as below.  

  

1.Total:  

An entity set dependent on a relationship set and having  one 

to many relationships is said to be ‘total’.  

The participation of the entity set ‘departments’ in the relationship         

set ‘manages’ is said to be total.   

  

2.Partial:  

     A participation that is not total is said to be partial.  

  

Example:  

Participation of the entity set ‘employees’ in ‘manages’ is partial, since not every employee gets to 

manage a department.  

In E-R diagram, the total participation is displayed as a ‘double line’ connecting the participating entity type to 

the relationship, where as partial participation is represented by a single line.  
      If the participation of an entity set in a relationship set is total, then a thick line connects the two.       

The presence of an arrow indicates a key constraint.  

  

 
  

1.Explain ‘weak Entities’? (3 Marks)(Jan-2005)  
    (4 Marks)(Semptember-2005) (4 Marks)(Feb-2002)  

  

  
  
  
  
  
  

  
  
  

: .Participation Constraints 2   

Works_in   Departments   

Since   
Dn o   

Dname   

Budget   

Name   
  

Street   
City   

Customer   

  Partial Participation   
  

  
  
                                                                                                       Total Participation   
  

  
3 .Weak Entity Set :   

Employees   

Name   
No   
  

Manages   
Department   

Dname   Budget   

Works_in   



  14  

GEU 

 

 Weak Entity Type:  

Entity types that do not have key attributes of their own are called as weak entity types.  

    A weak entity type always has a ‘total participation constraint’.  

  

  

 A weak entity set can be identified uniquely only by considering some of its attributes in conjunction with 

the primary key of another entity (Identifying owner).  For any weak entity set, following restrictions must 

hold.  

  

a. The owner entity set and the weak entity set must participate in a   
     One-to-many relationship set, which is called as the ‘Identifying       

Relationship Set’ of the weak entity set.    
b. The weak entity set must have total participation in the identifying relationship set.  

  

Example:  

  

‘Dependents’ is an example of a weak entity set.  

  

Partial key of the weak entity set:  

  

 The set of attributes of a weak entity set that uniquely identify a weak entity for a given owner entity is 

called as ‘partial key of the weak entity set’.  Example:  

  

‘Pname’ is a partial key for dependents.  

  

 
  

  

4.Aggregation:  

  

1.Explain ‘Aggregation’? (3 Marks, Jan-2005)  2.Explain how to use 

a ternary relationship instead of ‘aggregation’?      (5 Marks, Jan-

2005)  

3.Explain ‘Aggregation in ER model? (4 Marks, July-2004)  
    (5 Marks, March-2003) (4 Marks, July-2002)  

  

  

  

  

  

  

  The dependent weak entity set and its relationship to employees is shown in   the following diagram.   
  Linking them with a dark line indicates the total participation of dependents in policy.   
  To understand the fact that dependents is a weak entity and policy is its identifying relationship, we draw  

both with dark lines.   
  To indicate t hat ‘pname’ is a partial key for dependents, we underline it using a broken line.   

  
  
  
  
  
  
  
  

Employees   

Name   
No   

Policy   Dependents   

  

Cost   Age   Pname   

-------- 



  15  

GEU 

 

  

Aggregation is an abstraction for building composite objects from their component objects.  
Aggregation is used to represent a relationship between a whole object and its component parts. Aggregation 

allows us to indicate that a relationship set (identified through a dashed box) participates in another 

relationship set.  
This is illustrated with a dashed box around sponsors.  
If we need to express a relationship among relationships, then we should use aggregation.  

Aggregation versus Ternary Relationship:  

We can use either aggregation or ternary relationship for 3 or more entity sets.  
The choice is mainly determined by  

a. The existence of a relationship that relates a relationship set to an           

entity set or second relationship set.  
b. The choice may also guided by certain integrity constraints that we           

want to express.    

  

  

  

  

  

 
  

 According to the above diagram,  

  

   1.A project can be sponsored by any number of departments.  
   2.A department can sponsor 1 or more projects.  
   3.1 or more employees monitor each sponsorship.  
        (Many to Many Relationship)  

  

  
  
  
  
  
  
  

  
------------------------------------------ --------------------------------------------------- ------------------------   
  
  
  
  
  
  
  
  
  
-------------------------------------------------------------------------------------------- --------------------------   

Employees   No   Name   

Monitors   
Until   

Projects   

Pid   
Budget   

Sponsors   

Since   

Departments   

Dname   Budget   

  

  
  
  

  
  

  
  



  16  

GEU 

 

Consider the constraint that each relationship be monitored by at most 1 employee.  
We cannot express this constraint in terms of the ternary relationship in the following diagram. In that we 

are using a ternary relationship instead of aggregation.  
Aggregation groups a part of an E-Are diagram into a single entity set allowing us to treat the aggregate 

entity set as a single unit without concern for the details of it’s internal structure.   

Thus, the presence of such a constraint serves as another reason for using aggregation rather than a ternary 

relationship set.   

  

8.Conceptual Database Design With The ER Model  

  

 The information gathered in the requirements analysis step is used to develop a higher-level description of the 

data.  
 The goal of conceptual database design is a complete understanding of the database structure, meaning 

(semantics), inter-relationships and constraints.  Characteristics of this phase are as below.  

  

  1.Expressiveness:  

  

 The data model should be expressive to distinguish different   types  of data, 

relationships and constraints.  

  

  2.Simplicity and Understandability:  

  

    The model should be simple to understand the concepts.  

  

  3.Minimality:  

  

    The model should have small number of basic concepts.  

  

  4.Diagrammatic Representation:  

  

    The model should have a diagrammatic notation for   

 displaying the conceptual schema.  

  

  5.Formality:  

  

    A conceptual schema expressed in the data model must     

 represent a formal specification of the data.  

  

 Example:   

                         Cust_name: string;   
                         Cust_no: integer;   
                         Cust_city: string;  

  

  

  

  

  

  

  
  

  

  



  17  

GEU 

 

 

  

    
 There is at most 1 employee managing a department, but a given employee could manage several 

departments (1 to many relationships).  
 We can store starting date and ‘Dbudget’ for each manager-department pair.  

  

 This approach is natural, if we assume that a manager receives a single ‘Dbudget’ for each department that 

he manages. But if the ‘Dbudget’ is the sum of all departments, then ‘manages’ relationship that involves 

each employee will have the same value (total value). So this leads to redundancy.  

  

This can be solved by the appointment of the employee as a manager of a group of departments.  
We can model ‘mgr_appt’ as an entity set for manager appointment, use a ternary relationship and we can 

have at most 1 manager for each department due to 1 to many relationship.   

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

a. Entity Versus Relationships:   

  Suppose that each department manager is given a ‘Dbudget’ as shown in the figure.   
  
  
  

Works_in   Departments   

Since   
Dno   

Dname   

Budget   

Name   
  

Street   
City   

Customer   

  
  



  18  

GEU 

 

 
          

  

    Conceptual Database Design For Large Enterprises   

  

 The process of conceptual database design consists describing small fragments of the application in terms of 

E-R diagrams.  
 For a large Enterprise, the design may require,  

     1.More than 1 designer.  
    2.Span data and application by a number of user groups.  

 Using a high level semantic data model such as ER diagrams for conceptual design offers the additional 

advantages that,  
1.The high level design can be diagrammatically represented.  

2.Many people, who provide the input to the design process, easily understand it.  
 An alternative approach is to develop separate conceptual schemas for different user groups and then integrate 

all those.  
 To integrate, we must establish correspondences between entities, relationships and attributes, so that this 

process is somewhat difficult.  

The relations of degree 1 are called as ‘Unary Relations’.  

The relations of degree 2 are called as ‘Binary Relations’.  

The relations of degree 3 are called as ‘Ternary Relations’. The 

relations of degree n are called as ‘nary Relations’.  

  

  
  
  
  
  
  
  
  
  
  
  
  
  

  
  
  
  

Since   
Dbu d get   

Mgr_appt   

Works_in   Departments   

Since   
Dno   

Dname   

Budget   

Name   
  

Street   
City   

Customer   

  
  
  
  



  19  

GEU 

 

  

UNIT-3  

  
RELATIONAL MODEL  

  

A database is a collection of 1 or more ‘relations’, where each relation is a table with rows and columns. This is 

the primary data model for commercial data processing applications.  
The major advantages of the relational model over the older data models are,  

1.It is simple and elegant.  
2.simple data representation.  
3.The ease with which even complex queries can be expressed.  

  

Introduction:  

  

The main construct for representing data in the relational model is a ‘relation’.  
A relation consists of  

1.Relation Schema.  
2.Relation Instance.  

  Explanation is as below.  

  

1.Relation Schema:  

  

The relation schema describes the column heads for the table.  
The schema specifies the relation’s name, the name of each field (column, attribute) and the ‘domain’ of each 

field.  
A domain is referred to in a relation schema by the domain name and has a set of associated values.  
Example:  

Student information in a university database to illustrate the parts of a relation schema.  

  

Students (Sid: string, name: string, login: string, age: integer, gross: real)  

  

This says that the field named ‘sid’ has a domain named ‘string’.   

The set of values associated with domain ‘string’ is the set of all character strings.  

  

2.Relation Instance:  

  

  
  
  

  
  

  
  

  
  

  
  



  20  

GEU 

 

This is a table specifying the information.  

An instance of a relation is a set of ‘tuples’, also called ‘records’, in which each tuple has the same number of 

fields as the relation schemas.  
 A relation instance can be thought of as a table in which each tuple is a row and all rows have the same number 

of fields.  

The relation instance is also called as ‘relation’.  
Each relation is defined to be a set of unique tuples or rows.  

  

Example:  

 

  This example is an instance of the students relation, which consists 4 tuples and 5 fields. No two rows are 

identical.  

  

 Degree:  

The number of fields is called as ‘degree’.  

This is also called as ‘arity’.  Cardinality:  
The cardinality of a relation instance is the number of tuples in it.  
Example:  

In the above example, the degree of the relation is 5 and the cardinality is 4.  
 Relational database:  

It is a collection of relations with distinct relation names.  
 Relational database schema:  

It is the collection of schemas for the relations in the database.  
 Instance:  

An instance of a relational database is a collection of relation instances, one per relation schema in the 

database schema.  
Each relation instance must satisfy the domain constraints in its schema.  

  

    2.Integrity constraints over relations  

  

 An integrity constraint (IC) is a condition that is specified on a database schema and restricts the data can be 

stored in an instance of the database.  

Various restrictions on data that can be specified on a relational database schema in the form of ‘constraints’. 

A DBMS enforces integrity constraints, in that it permits only legal instances to be stored in the database. 

Integrity constraints are specified and enforced at different times as below.  

  

1.When the DBA or end user defines a database schema, he or she        specifies 

the ICs that must hold on any instance of this database.  
2.When a data base application is run, the DBMS checks for violations     and 

disallows changes to the data that violate the specified ICs.  

  

 Legal Instance:  

If the database instance satisfies all the integrity constraints specified on the database schema.  
 The constraints can be classified into 4 types as below.  

  

  
  

  
  

  
  
  



  21  

GEU 

 

1.Domain Constraints.  
2.Key Constraints.  
3.Entity Integrity Constraints.  
4.Referential Integrity Constraints.  

    Explanation is as below.  

  

  

1.Domain Constraints  

  

 Domain constraints are the most elementary form of integrity constraints. They are tested easily by the system 

whenever a new data item is entered into the database.  
 Domain constraints specify the set of possible values that may be associated with an attribute. Such constraints 

may also prohibit the use of null values for particular attributes.  
The data types associated with domains typically include standard numeric data types for integers A 

relation schema specifies the domain of each field or column in the relation instance.  
These domain constraints in the schema specify an important condition that each instance of the relation to 

satisfy: The values that appear in a column must be drawn from the domain associated with that column.  Thus 

the domain of a field is essentially the type of that field.  
2.Key Constraints  
1.Explain the concept of Super Key, Candidate Key and Primary Key with examples?(6 Marks, Feb-2004)  

 A key constraint is a statement that a certain minimal subset of the fields of a relation is a unique identifier for a 

tuple.  
 Example:  

  The ‘students’ relation and the constraint that no 2 students have tha same student id (sid).  These can be 

classified into 3 types as below.  
a. Candidate Key or Key.  
b. Super Key.  
c. Primary Key.   Explanation is as below. a. Candidate Key or Key:  

1.Explain ‘Candidate Key’?(4 Marks, Semptember-2003)  

 A set of fields that uniquely identifies a tuple according to a key constraint is called as a ‘Candidate Key’ for the 

relation.  

This is also called as a ‘key’.  
From the definition of candidate key, we have,  

  1.Two distinct tuples in a legal instance cannot have identical values   in all the fields of a 

key.i.e, in any legal instance, the values in the key   fields uniquely identify a 

tuple in the instance.  
    i.e,the values in the key fields uniquely identify a tuple in the instance.  2. No 

subset of the set of fields in key is a unique identifier for a tuple,   
  i.e., the set of fields {sid, name} is not a key for Students. A relation schema 

may have more than key.  

Example: In the above Students relation, the ‘sid’ field is a candidate key.  {sid}.  
The value of a key attribute can be used to identify uniquely each tuple in the relation.  

‘A set of attributes constituting a key’ is a property of the relation schema. A 

key is determined from the meaning of attributes.  
Every relation is guaranteed to have a key. Since a relation is a set of tuples, the set of all fields is always a super 

key.  
b. Super Key:  

The set of fields that contains a key is called as a ‘super key’.  
The set of 1 or more attributes that allows us to identify uniquely an entity in the entity set.  
A super key specifies a uniqueness constraint that no 2 distinct tuples can have the same value.  
Every relation has at least 1 default super key as the set of all attributes.  
Example:  

Students             

  

  

  
  
  

  
  

  
  

  
  
  
  

  
  
  
  
  



  22  

GEU 

 

Sid   
    
    
    
    

 (Relation) Name   (Fields)  
 Login  
 Age  

    Gross  
One of the super key = {Sid, Name, Login, Age, Gross}  

   

  

c. Primary Key:  

  

This is also a candidate key, whose values are used to identify tuples in the relation.  
It is common to designate one of the candidate keys as a primary key of the relation.  

The attributes that form the primary key of a relation schema are underlined. It 

is used to denote a candidate key that is chosen by the database designer as the  

principal means of identifying entities with an entity set.  Example:  

‘Sid’ of Students relation.  

  

d. Specifying Key Constraints in SQL-92:  

  

 In SQL, we are declaring the set of fields of a table consisting a key by using   

    ‘UNIQUE’ constraint.  
 This  ‘UNIQUE’ constraint specifies that 2 distinct tuples cannot have identical       Values.  
 Candidate keys can be declared as a ‘primary key’ using the constraint      ‘PRIMARY KEY’.  

 We can name a constraint by using the syntax as below.  

  

CONSTRAINT constraint_name KEY_NOTATION (key_names);  
 If the constraint is violated, then the constraint_name is returned and it can be used       to identify the 

error.  
 Example:  

Express ‘sid’ as a primary key and the combination {name, age} as a key.  

  

  CREATE TABLE Students (sid CHAR (20),     name CHAR (30),     login CHAR(20),                                                            

age INTEGER,    gross REAL,    UNIQUE (name, age),  
`                          CONSTRAINT sid1 PRIMARY KEY (sid));  

  

3.Entity Integrity Constraints  

  

This states that no primary key value can be null.  
The primary key value is used to identify individual tuples in a relation.  
Having null values for the primary key implies that we cannot identify some tuples.  
NOTE: Key Constraints, Entity Integrity Constraints are specified on individual relations. PRIMARY 

KEYS comes under this.  

  

4.Referential Integrity Constraints  

  

 The Referential Integrity Constraint is specified between 2 relations and is used to        

maintain the consistency among tuples of the 2 relations.  
 Informally, the referential integrity constraint states that ‘a tuple in 1 relation that       

refers to another relation must refer to an existing tuple in that relation.   
 We can diagrammatically display the referential integrity constraints by drawing a       

directed arc from each foreign key to the relation it references. The arrowhead may        point 

to the primary key of the referenced relation.  

  

  

  
  
  
  

  
  
  
  
  



  23  

GEU 

 

  

                                                                       Unit-4  
  
SELECT Statement Basics  

  

In the subsequent text, the following 3 example tables are used:   

 p Table (parts)   s Table (suppliers)   sp Table (suppliers & parts)   

 

pno  descr   color   sno  name  city   

P1   Widget  Blue   S1   Pierre  Paris   

P2   Widget  Red   S2   John   London  

P3   Dongle  Green  S3   Mario  Rome   
 

 

sno  pno  qty   

S1   P1   NULL  

S2   P1   200 

S3   P1   1000 

S3   P2   200 
 

  

  

  

The SQL SELECT statement queries data from tables in the database. The statement begins with the 

SELECT keyword. The basic SELECT statement has 3 clauses:   

SELECT   

FROM   

WHERE   

The SELECT clause specifies the table columns that are retrieved. The FROM clause specifies the tables 

accessed. The WHERE clause specifies which table rows are used. The WHERE clause is optional; if 

missing, all table rows are used.   

For example,   

SELECT name FROM s WHERE city='Rome'  

This query accesses rows from the table - s. It then filters those rows where the city column contains Rome. 

Finally, the query retrieves the name column from each filtered row. Using the example s table, this query 

produces:   

name  

Mario  

A detailed description of the query actions:   

 The FROM clause accesses the s table. Contents:   

sno  name  city   

S1   Pierre  Paris   

S2   John   London  

S3   Mario  Rome   

 The WHERE clause filters the rows of the FROM table to use those whose city column contains Rome. 

This chooses a single row from s:   

sno  name  city   

  

  

  

  

  



  24  

GEU 

 

S3   Mario  Rome  

 The SELECT clause retrieves the name column from the rows filtered by the WHERE clause:   

name  

Mario  

SELECT Clause  

The SELECT clause is mandatory. It specifies a list of columns to be retrieved from the tables in the FROM 

clause. It has the following general format:   

SELECT [ALL|DISTINCT] select-list select-list is a list of column names separated by commas. 

The ALL and DISTINCT specifiers are optional. DISTINCT specifies that duplicate rows are discarded. A 

duplicate row is when each corresponding selectlist column has the same value. The default is ALL, which 

retains duplicate rows.   

For example,   

SELECT descr, color FROM p  

The column names in the select list can be qualified by the appropriate table name:  SELECT 

p.descr, p.color FROM p  

A column in the select list can be renamed by following the column name with the new name. For example:   

SELECT name supplier, city location FROM s This 

produces:   

supplier  location  

Pierre   Paris   

John   London   

Mario   Rome   

  

A special select list consisting of a single '*' requests all columns in all tables in the FROM clause. For 

example,   

SELECT * FROM sp  

  

sno  pno  qty   

S1   P1   NULL  

S2   P1   200   

S3   P1   1000   

S3   P2   200   

The * delimiter will retrieve just the columns of a single table when qualified by the table name. For example:   

SELECT sp.* FROM sp  

This produces the same result as the previous example.   

An unqualified * cannot be combined with other elements in the select list; it must be stand alone. However, 

a qualified * can be combined with other elements. For example,   

SELECT sp.*, city  

FROM sp, s  

WHERE sp.sno=s.sno  

sno  pno  qty   city   

S1   P1   NULL  Paris   

  



  25  

GEU 

 

S2   P1   200   London  

S3   P1   1000   Rome   

S3   P2   200   Rome   

Note: this is an example of a query joining 2 tables.  FROM 

Clause  

The FROM clause always follows the SELECT clause. It lists the tables accessed by the query. For example,   

SELECT * FROM s  

When the From List contains multiple tables, commas separate the table names. For example,  SELECT 

sp.*, city  

FROM sp, s  

WHERE sp.sno=s.sno  

When the From List has multiple tables, they must be joined together.  Correlation 

Names  
Like columns in the select list, tables in the from list can be renamed by following the table name with the 

new name. For example,   

SELECT supplier.name FROM s supplier  

The new name is known as the correlation (or range) name for the table. Self joins require correlation names.   

WHERE Clause  

The WHERE clause is optional. When specified, it always follows the FROM clause. The WHERE clause 

filters rows from the FROM clause tables. Omitting the WHERE clause specifies that all rows are used.   

Following the WHERE keyword is a logical expression, also known as a predicate.   

The predicate evaluates to a SQL logical value -- true, false or unknown. The most basic predicate is a 

comparison:   

color = 'Red'  

This predicate returns:   

true -- if the color column contains the string value -- 'Red',  false -- if 

the color column contains another string value (not 'Red'), or  

unknown -- if the color column contains null.   

Generally, a comparison expression compares the contents of a table column to a literal, as above. A 

comparison expression may also compare two columns to each other. Table joins use this type of comparison.   

The = (equals) comparison operator compares two values for equality. Additional comparison operators are:   

> -- greater than   

< -- less than   

>= -- greater than or equal to   

<= -- less than or equal to   

<> -- not equal to   

For example,   

SELECT * FROM sp WHERE qty >= 200  

sno  pno  qty   

S2   P1   200   

S3   P1   1000 

S3   P2   200   

  

  

  

  

  

  

  

  



  26  

GEU 

 

Note: In the sp table, the qty column for one of the rows contains null. The comparison - qty >= 200, evaluates 

to unknown for this row. In the final result of a query, rows with a WHERE clause evaluating to unknown 

(or false) are eliminated (filtered out).   

Both operands of a comparison should be the same data type, however automatic conversions are performed 

between numeric, datetime and interval types. The CAST expression provides explicit type conversions.   

Extended Comparisons  
In addition to the basic comparisons described above, SQL supports extended comparison operators -- 

BETWEEN, IN, LIKE and IS NULL.   

 BETWEEN Operator   

The BETWEEN operator implements a range comparison, that is, it tests whether a value is between 

two other values. BETWEEN comparisons have the following format:   

value-1 [NOT] BETWEEN value-2 AND value-3  

This comparison tests if value-1 is greater than or equal to value-2 and less than or equal to value3. 

It is equivalent to the following predicate:   

value-1 >= value-2 AND value-1 <= value-3  

Or, if NOT is included:   

NOT (value-1 >= value-2 AND value-1 <= value-3)  

For example,   

SELECT *  

FROM sp  

WHERE qty BETWEEN 50 and 500  

sno  pno  qty  

S2   P1   200 

S3   P2   200 

 IN Operator   

The IN operator implements comparison to a list of values, that is, it tests whether a value matches 

any value in a list of values. IN comparisons have the following general format:   

value-1 [NOT] IN ( value-2 [, value-3] ... )  

This comparison tests if value-1 matches value-2 or matches value-3, and so on. It is equivalent to 

the following logical predicate:   

value-1 = value-2 [ OR value-1 = value-3 ] ...  

or if NOT is included:   

NOT (value-1 = value-2 [ OR value-1 = value-3 ] ...)  

  

  



  27  

GEU 

 

For example,   

SELECT name FROM s WHERE city IN ('Rome','Paris')  

name  

Pierre  

Mario  

 LIKE Operator   

The LIKE operator implements a pattern match comparison, that is, it matches a string value against 

a pattern string containing wild-card characters.   

The wild-card characters for LIKE are percent -- '%' and underscore -- '_'. Underscore matches any 

single character. Percent matches zero or more characters.   

Examples,   

Match Value  Pattern  Result  

'abc'   '_b_'   True   

'ab'   '_b_'   False   

'abc'   '%b%'   True   

'ab'   '%b%'   True   

'abc'   'a_'   False   

'ab'   'a_'   True   

'abc'   'a%_'   True   

'ab'   'a%_'   True   

LIKE comparison has the following general format:   

value-1 [NOT] LIKE value-2 [ESCAPE value-3]  

All values must be string (character). This comparison uses value-2 as a pattern to match value-1. 

The optional ESCAPE sub-clause specifies an escape character for the pattern, allowing the pattern 

to use '%' and '_' (and the escape character) for matching. The ESCAPE value must be a single 

character string. In the pattern, the ESCAPE character precedes any character to be escaped.   

For example, to match a string ending with '%', use:   

x LIKE '%/%' ESCAPE '/'  

A more contrived example that escapes the escape character:   

y LIKE '/%//%' ESCAPE '/'  

... matches any string beginning with '%/'.   

The optional NOT reverses the result so that:   

  



  28  

GEU 

 

z NOT LIKE 'abc%'  

is equivalent to:   

NOT z LIKE 'abc%'  

 IS NULL Operator   

A database null in a table column has a special meaning -- the value of the column is not currently 

known (missing), however its value may be known at a later time. A database null may represent any 

value in the future, but the value is not available at this time. Since two null columns may eventually 

be assigned different values, one null can't be compared to another in the conventional way. The 

following syntax is illegal in SQL:   

WHERE qty = NULL  

A special comparison operator -- IS NULL, tests a column for null. It has the following general 

format:   

value-1 IS [NOT] NULL  

This comparison returns true if value-1 contains a null and false otherwise. The optional NOT 

reverses the result:   

value-1 IS NOT NULL  

is equivalent to:   

NOT value-1 IS NULL  

For example,   

SELECT * FROM sp WHERE qty IS NULL  

sno  pno  qty   

S1   P1   NULL  

Logical Operators  
The logical operators are AND, OR, NOT. They take logical expressions as operands and produce a logical 

result (True, False, Unknown). In logical expressions, parentheses are used for grouping.   

 AND Operator   

The AND operator combines two logical operands. The operands are comparisons or logical 

expressions. It has the following general format:   

predicate-1 AND predicate-2  

AND returns:   

o True -- if both operands evaluate to true  o  False -- if either operand evaluates to false  o 

 Unknown -- otherwise (one operand is true and the other is unknown or both are unknown)   

  

  



  29  

GEU 

 

The truth table for AND:   

AND   T    F    U  

 T     T    F    U  

 F     F    F    F   

 U     U    F    U  

For example,   

SELECT *  

FROM sp  

WHERE sno='S3' AND qty < 500  

sno  pno  qty  

S3   P2   200 

 OR Operator   

The OR operator combines two logical operands. The operands are comparisons or logical 

expressions. It has the following general format:   

predicate-1 OR predicate-2  

OR returns:   

o True -- if either operand evaluates to true  o  False -- if both operands evaluate to false  o 

 Unknown -- otherwise (one operand is false and the other is unknown or both are 

unknown)   

The truth table for OR:   

OR   T    F    U  

 T     T    T    T   

 F     T    F    U  

 U     T    U    U  

For example,   

SELECT *  

FROM s  

WHERE sno='S3' OR city = 'London'  

sno  name  city   

S2   John   London  

S3   Mario  Rome   

AND has a higher precedence than OR, so the following expression:   

a OR b AND c  

is equivalent to:   

  



  30  

GEU 

 

a OR (b AND c)  

 NOT Operator   

The NOT operator inverts the result of a comparison expression or a logical expression. It has the 

following general format:   

NOT predicate-1  

The truth table for NOT:   

NOT      

 T     F   

 F     T   

 U     U  

Example query:   

SELECT *  

FROM sp  

WHERE NOT sno = 'S3'  

sno  pno  qty   

S1   P1   NULL  

S2   P1   200   

  

  

ORDER BY Clause  

The ORDER BY clause is optional. If used, it must be the last clause in the SELECT statement. The ORDER 

BY clause requests sorting for the results of a query.   

When the ORDER BY clause is missing, the result rows from a query have no defined order (they are 

unordered). The ORDER BY clause defines the ordering of rows based on columns from the SELECT 

clause. The ORDER BY clause has the following general format:   

ORDER BY column-1 [ASC|DESC] [ column-2 [ASC|DESC] ] ... column-1, column-2, ... are 

column names specified (or implied) in the select list. If a select column is renamed (given a new name in 

the select entry), the new name is used in the ORDER BY list. ASC and DESC request ascending or 

descending sort for a column. ASC is the default.   

ORDER BY sorts rows using the ordering columns in left-to-right, major-to-minor order. The rows are sorted 

first on the first column name in the list. If there are any duplicate values for the first column, the duplicates 

are sorted on the second column (within the first column sort) in the Order By list, and so on. There is no 

defined inner ordering for rows that have duplicate values for all Order By columns.   

Database nulls require special processing in ORDER BY. A null column sorts higher than all regular values; 

this is reversed for DESC.   

In sorting, nulls are considered duplicates of each other for ORDER BY. Sorting on hidden information 

makes no sense in utilizing the results of a query. This is also why SQL only allows select list columns in 

ORDER BY.   

For convenience when using expressions in the select list, select items can be specified by number (starting 

with 1). Names and numbers can be intermixed.   

Example queries:   

  



  31  

GEU 

 

SELECT * FROM sp ORDER BY 3 DESC  

sno  pno  qty   

S1   P1   NULL  

S3   P1   1000   

S3   P2   200   

S2   P1   200   

SELECT name, city FROM s ORDER BY name  

name  city   

John   London  

Mario  Rome   

Pierre  Paris   

SELECT * FROM sp ORDER BY qty DESC, sno  

sno  pno  qty   

S1   P1   NULL  

S3   P1   1000   

S2   P1   200   

S3   P2   200   

Expressions  

In the previous subsection on basic Select statements, column values are used in the select list and where 

predicate. SQL allows a scalar value expression to be used instead. A SQL value expression can be a:   

Literal -- quoted string, numeric value, datetime value  

Function Call -- reference to builtin SQL function  System 

Value -- current date, current user, ...   

Special Construct -- CAST, COALESCE, CASE   

Numeric or String Operator -- combining sub-expressions   

Literals  
A literal is a typed value that is self-defining. SQL supports 3 types of literals:   

 String -- ASCII text framed by single quotes ('). Within a literal, a single quote is represented by 2 

single quotes ('').   

 Numeric -- numeric digits (at least 1) with an optional decimal point and exponent. The format is   

[ddd][[.]ddd][E[+|-]ddd]  

Numeric literals with no exponent or decimal point are typed as Integer. Those with a decimal point 

but no exponent are typed as Decimal. Those with an exponent are typed as Float.   

 Datetime -- datetime literals begin with a keyword identifying the type, followed by a string literal:   

o  Date -- DATE 'yyyy-mm-dd'  o  Time -- TIME 

'hh:mm:ss[.fff]'  o  Timestamp -- TIMESTAMP 'yyyy-mm-dd 

hh:mm:ss[.fff]'  o  Interval -- INTERVAL [+|-] string 

interval-qualifier   

  

  

  

  

  

  

  

  

http://www.firstsql.com/tutor6.htm#qual
http://www.firstsql.com/tutor6.htm#qual
http://www.firstsql.com/tutor6.htm#qual
http://www.firstsql.com/tutor6.htm#qual


  32  

GEU 

 

The format of the string in the Interval literal depends on the interval qualifier. For year-month 

intervals, the format is: 'dd[-dd]'. For day-time intervals, the format is '[dd ]dd[:dd[:dd]][.fff]'.   

SQL Functions  
SQL has the following builtin functions:   

 SUBSTRING(exp-1 FROM exp-2 [FOR exp-3])   

Extracts a substring from a string - exp-1, beginning at the integer value - exp-2, for the length of the 

integer value - exp-3. exp-2 is 1 relative. If FOR exp-3 is omitted, the length of the remaining string 

is used. Returns the substring.   

 UPPER(exp-1)   

Converts any lowercase characters in a string - exp-1 to uppercase. Returns the converted string.   

 LOWER(exp-1)   

Converts any uppercase characters in a string - exp-1 to lowercase. Returns the converted string.   

  TRIM([LEADING|TRAILING|BOTH]  [FROM]  exp-1)  

TRIM([LEADING|TRAILING|BOTH] exp-2 FROM exp-1)   

Trims leading, trailing or both characters from a string - exp-1. The trim character is a space, or if 

exp-2 is specified, it supplies the trim character. If LEADING, TRAILING, BOTH are missing, the 

default is BOTH. Returns the trimmed string.   

 POSITION(exp-1 IN exp-2)   

Searches a string - exp-2, for a match on a substring - exp-2. Returns an integer, the 1 relative position 

of the match or 0 for no match.   

 CHAR_LENGTH(exp-1)  

CHARACTER_LENGTH(exp-1)   

Returns the integer number of characters in the string - exp-1.   

 OCTET_LENGTH(exp-1)   

Returns the integer number of octets (8-bit bytes) needed to represent the string - exp-1.   

 EXTRACT(sub-field FROM exp-1)   

Returns the numeric sub-field extracted from a datetime value - exp-1. sub-field is YEAR,  

QUARTER, MONTH, DAY, HOUR, MINUTE, SECOND, TIMEZONE_HOUR or 

TIMEZONE_MINUTE. TIMEZONE_HOUR and TIMEZONE_MINUTE extract sub-fields from 

the Timezone portion of exp-1. QUARTER is (MONTH-1)/4+1.   

System Values  
SQL System Values are reserved names used to access builtin values:   

  

  

  

  

  

  

  

  



  33  

GEU 

 

USER -- returns a string with the current SQL authorization identifier.   

CURRENT_USER -- same as USER.   

SESSION_USER -- returns a string with the current SQL session authorization identifier.   

SYSTEM_USER -- returns a string with the current operating system user.   

CURRENT_DATE -- returns a Date value for the current system date.   

CURRENT_TIME -- returns a Time value for the current system time.   

CURRENT_TIMESTAMP -- returns a Timestamp value for the current system timestamp.   

SQL Special Constructs  
SQL supports a set of special expression constructs:   

 CAST(exp-1 AS data-type)   

Converts the value - exp-1, into the specified date-type. Returns the converted value.   

 COALESCE(exp-1, exp-2 [, exp-3] ...)   

Returns exp-1 if it is not null, otherwise returns exp-2 if it is not null, otherwise returns exp-3, and so 

on. Returns null if all values are null.   

 CASE  exp-1  {  WHEN  exp-2  THEN  exp-3  }  ...  [ELSE  exp-4]  END 

CASE { WHEN predicate-1 THEN exp-3 } ... [ELSE exp-4] END   

The first form of the CASE construct compares exp-1 to exp-2 in each WHEN clause. If a match is 

found, CASE returns exp-3 from the corresponding THEN clause. If no matches are found, it returns 

exp-4 from the ELSE clause or null if the ELSE clause is omitted.   

The second form of the CASE construct evaluates predicate-1 in each WHEN clause. If the predicate 

is true, CASE returns exp-3 from the corresponding THEN clause. If no predicates evaluate to true, 

it returns exp-4 from the ELSE clause or null if the ELSE clause is omitted.   

Expression Operators  
Expression operators combine 2 subexpressions to calculate a value. There are 2 basic types -- numeric and 

string.   

 String Operators   

There is just one string operator - ||, for string concatenation. Both operands of || must be strings. The 

operator concatenates the second string to the end of the first. For example,   

'ab' || 'cd'  ==> 'abcd'  

 Numeric operators   

The numeric operators are common to most languages:   

o + -- addition  o  - -- subtraction  o  * -- multiplication  o  / -- division   

All numeric operators can be used on the standard numeric data types:   

o Integer -- TINYINT, SMALLINT, INT, BIGINT   

  

  

  

  

  

  

  

  

  

  

  
  



  34  

GEU 

 

o Exact -- NUMERIC, DECIMAL  o Approximate -- FLOAT, DOUBLE, REAL   

Automatic conversion is provided for numeric operators. If an integer type is combined with an exact 

type, the integer is converted to exact before the operation. If an exact (or integer) type is combined 

with an approximate type, it is converted to approximate before the operation.   

The + and - operators can also be used as unary operators.   

The numeric operators can be applied to datetime values, with some restrictions. The basic rules for 

datetime expressions are:   

o A date, time, timestamp value can be added to an interval; result is a date, time, timestamp 

value.   

o An interval value can be subtracted from a date, time, timestamp value; result is a date, time, 

timestamp value.   

o An interval value can be added to or subtracted from another interval; result is an interval 

value.   

o An interval can be multiplied by or divided by a standard numeric value; result is an interval 

value.   

A special form can be used to subtract a date, time, timestamp value from another date, time, 

timestamp value to yield an interval value:   

(datetime-1 - datetime-2) interval-qualifier  

The interval-qualifier specifies the specific interval type for the result.   

A second special form allows a ? parameter to be typed as an interval:   

? interval-qualifier  

In expressions, parentheses are used for grouping.  Joining 

Tables  

The FROM clause allows more than 1 table in its list, however simply listing more than one table will very 

rarely produce the expected results. The rows from one table must be correlated with the rows of the others. 

This correlation is known as joining.   

An example can best illustrate the rationale behind joins. The following query:   

SELECT * FROM sp, p  

Produces:   

sno  pno  qty   pno  descr   color  

S1   P1   NULL  P1   Widget  Blue   

S1   P1   NULL  P2   Widget  Red   

S1   P1   NULL  P3   Dongle  Green  

S2   P1   200   P1   Widget  Blue   

S2   P1   200   P2   Widget  Red   

S2   P1   200   P3   Dongle  Green  

S3   P1   1000   P1   Widget  Blue   



  35  

GEU 

 

S3   P1   1000   P2   Widget  Red   

S3   P1   1000   P3   Dongle  Green  

S3   P2   200   P1   Widget  Blue   

S3   P2   200   P2   Widget  Red   

S3   P2   200   P3   Dongle  Green  

Each row in sp is arbitrarily combined with each row in p, giving 12 result rows (4 rows in sp X 3 rows in 

p.) This is known as a cartesian product.   

A more usable query would correlate the rows from sp with rows from p, for instance matching on the 

common column -- pno:   

SELECT *  

FROM sp, p  

WHERE sp.pno = p.pno  

This produces:   

sno  pno  qty   pno  descr   color  

S1   P1   NULL  P1   Widget  Blue   

S2   P1   200   P1   Widget  Blue   

S3   P1   1000   P1   Widget  Blue   

S3   P2   200   P2   Widget  Red   

Rows for each part in p are combined with rows in sp for the same part by matching on part number (pno). 

In this query, the WHERE Clause provides the join predicate, matching pno from p with pno from sp.   

The join in this example is known as an inner equi-join. equi meaning that the join predicate uses = (equals) 

to match the join columns. Other types of joins use different comparison operators. For example, a query 

might use a greater-than join.   

The term inner means only rows that match are included. Rows in the first table that have no matching rows 

in the second table are excluded and vice versa (in the above join, the row in p with pno P3 is not included 

in the result.) An outer join includes unmatched rows in the result.   

More than 2 tables can participate in a join. This is basically just an extension of a 2 table join. 3 tables -- a, 

b, c, might be joined in various ways:   

a joins b which joins c   

a joins b and the join of a and b joins c  a 

joins b and a joins c   

Plus several other variations. With inner joins, this structure is not explicit. It is implicit in the nature of the 

join predicates. With outer joins, it is explicit;  This query performs a 3 table join:   

SELECT name, qty, descr, color  

FROM s, sp, p  

WHERE s.sno = sp.sno  

AND sp.pno = p.pno  

It joins s to sp and sp to p, producing:   

name  qty   descr   color  

Pierre  NULL  Widget  Blue   

John   200   Widget  Blue   

  

  

  



  36  

GEU 

 

Mario  1000   Widget  Blue   

Mario  200   Widget  Red   

Note that the order of tables listed in the FROM clause should have no significance, nor does the order of 

join predicates in the WHERE clause.  Outer Joins  
An inner join excludes rows from either table that don't have a matching row in the other table. An outer join 

provides the ability to include unmatched rows in the query results. The outer join combines the unmatched 

row in one of the tables with an artificial row for the other table. This artificial row has all columns set to 

null.   

The outer join is specified in the FROM clause and has the following general format:   

table-1 { LEFT | RIGHT | FULL } OUTER JOIN table-2 ON predicate-1 predicate-1 is a join 

predicate for the outer join. It can only reference columns from the joined tables. The LEFT, RIGHT or 

FULL specifiers give the type of join:   

LEFT -- only unmatched rows from the left side table (table-1) are retained   

RIGHT -- only unmatched rows from the right side table (table-2) are retained  FULL 

-- unmatched rows from both tables (table-1 and table-2) are retained   

Outer join example:   

SELECT pno, descr, color, sno, qty  

FROM p LEFT OUTER JOIN sp ON p.pno = sp.pno  

pno  descr   color   sno   qty   

P1   Widget  Blue   S1   NULL  

P1   Widget  Blue   S2   200   

P1   Widget  Blue   S3   1000   

P2   Widget  Red   S3   200   

P3   Dongle  Green  NULL  NULL  

Self Joins  
A query can join a table to itself. Self joins have a number of real world uses. For example, a self join can 

determine which parts have more than one supplier:   

SELECT DISTINCT a.pno  

FROM sp a, sp b  

WHERE a.pno = b.pno  

AND a.sno <> b.sno  

pno  

P1   

As illustrated in the above example, self joins use correlation names to distinguish columns in the select list 

and where predicate. In this case, the references to the same table are renamed - a and b.  Self joins are often 

used in subqueries.   

Subqueries  

Subqueries are an identifying feature of SQL. It is called Structured Query Language because a query can 

nest inside another query.   

There are 3 basic types of subqueries in SQL:   

Predicate Subqueries -- extended logical constructs in the WHERE (and HAVING) clause.   

  

  

  

  

  



  37  

GEU 

 

Scalar Subqueries -- standalone queries that return a single value; they can be used anywhere a scalar 

value is used.   

 Table Subqueries -- queries nested in the FROM clause.  

All subqueries must be enclosed in parentheses.  Predicate 

Subqueries  

Predicate subqueries are used in the WHERE (and HAVING) clause. Each is a special logical construct.  

Except for EXISTS, predicate subqueries must retrieve one column (in their select list.)   

 IN Subquery   

The IN Subquery tests whether a scalar value matches the single query column value in any subquery 

result row. It has the following general format:   

value-1 [NOT] IN (query-1)  

Using NOT is equivalent to:   

NOT value-1 IN (query-1)  

For example, to list parts that have suppliers:   

SELECT *  

FROM p  

WHERE pno IN (SELECT pno FROM sp)  

pno  descr   color  

P1   Widget  Blue   

P2   Widget  Red   

The Self Join example in the previous subsection can be expressed with an IN Subquery:   

SELECT DISTINCT pno  

FROM sp a  

WHERE pno IN (SELECT pno FROM sp b WHERE a.sno <> b.sno)  

pno  

P1   

Note that the subquery where clause references a column in the outer query (a.sno). This is known 

as an outer reference. Subqueries with outer references are sometimes known as correlated 

subqueries.   

 Quantified Subqueries   

A quantified subquery allows several types of tests and can use the full set of comparison operators. 

It has the following general format:   

value-1 {=|>|<|>=|<=|<>} {ANY|ALL|SOME} (query-1)  

  

  

  



  38  

GEU 

 

The comparison operator specifies how to compare value-1 to the single query column value from 

each subquery result row. The ANY, ALL, SOME specifiers give the type of match expected. ANY 

and SOME must match at least one row in the subquery. ALL must match all rows in the subquery.   

For example, to list all parts that have suppliers:   

SELECT *  

FROM p  

WHERE pno =ANY (SELECT pno FROM sp)  

pno  descr   color  

P1   Widget  Blue   

P2   Widget  Red   

A self join is used to list the supplier with the highest quantity of each part (ignoring null quantities):   

SELECT *  

FROM sp a  

WHERE qty >ALL (SELECT qty FROM sp b  

                WHERE a.pno = b.pno   

                AND a.sno <> b.sno  

                AND qty IS NOT NULL)  

sno  pno  qty   

S3   P1   1000 

S3   P2   200   

 EXISTS Subqueries   

The EXISTS Subquery tests whether a subquery retrieves at least one row, that is, whether a 

qualifying row exists. It has the following general format   

EXISTS(query-1)  

Any valid EXISTS subquery must contain an outer reference. It must be a correlated subquery.   

Note: the select list in the EXISTS subquery is not actually used in evaluating the EXISTS, so it can 

contain any valid select list (though * is normally used).   

To list parts that have suppliers:   

SELECT *  

FROM p  

WHERE EXISTS(SELECT * FROM sp WHERE p.pno = sp.pno)  

pno  descr   color  

P1   Widget  Blue   

P2   Widget  Red   

Scalar Subqueries  

  



  39  

GEU 

 

The Scalar Subquery can be used anywhere a value can be used. The subquery must reference just one column 

in the select list. It must also retrieve no more than one row.   

When the subquery returns a single row, the value of the single select list column becomes the value of the 

Scalar Subquery. When the subquery returns no rows, a database null is used as the result of the subquery. 

Should the subquery retreive more than one row, it is a run-time error and aborts query execution.   

A Scalar Subquery can appear as a scalar value in the select list and where predicate of an another query. 

The following query on the sp table uses a Scalar Subquery in the select list to retrieve the supplier city 

associated with the supplier number (sno column in sp):   

SELECT pno, qty, (SELECT city FROM s WHERE s.sno = sp.sno) FROM 

sp  

pno  qty   city   

P1   NULL  Paris   

P1   200   London  

P1   1000   Rome   

P2   200   Rome   

The next query on the sp table uses a Scalar Subquery in the where clause to match parts on the color 

associated with the part number (pno column in sp):   

SELECT *  

FROM sp  

WHERE 'Blue' = (SELECT color FROM p WHERE p.pno = sp.pno)  

sno  pno  qty   

S1   P1   NULL  

S2   P1   200   

S3   P1   1000   

Note that both example queries use outer references. This is normal in Scalar Subqueries. Often, Scalar 

Subqueries are Aggregate Queries.  Table Subqueries  
Table Subqueries are queries used in the FROM clause, replacing a table name. Basically, the result set of 

the Table Subquery acts like a base table in the from list. Table Subqueries can have a correlation name in 

the from list. They can also be in outer joins.  The following two queries produce the same result:   

SELECT p.*, qty  

FROM p, sp  

WHERE p.pno = sp.pno AND 

sno = 'S3'  

pno  descr   color  qty   

P1   Widget  Blue   1000 

P2   Widget  Red   200   

SELECT p.*, qty  

FROM p, (SELECT pno, qty FROM sp WHERE sno = 'S3') WHERE 

p.pno = sp.pno  

pno  descr   color  qty   

P1   Widget  Blue   1000 

P2   Widget  Red   200   



  40  

GEU 

 

Grouping Queries  

A Grouping Query is a special type of query that groups and summarizes rows. It uses the GROUP BY 

Clause.   

A Grouping Query groups rows based on common values in a set of grouping columns. Rows with the same 

values for the grouping columns are placed in distinct groups. Each group is treated as a single row in the 

query result.   

Even though a group is treated as a single row, the underlying rows can be subject to summary operations 

known as Set Functions whose results can be included in the query. The optional HAVING Clause supports 

filtering for group rows in the same manner as the WHERE clause filters FROM rows.  For example, 

grouping the sp table on the pno column produces 2 groups:   

sno  pno  qty     

S1   P1   NULL  

'P1' Group  S2   P1   200   

S3   P1   1000   

S3   P2   200   'P2' Group  

The P1 group contains 3 sp rows with pno='P1'   

The P2 group contains a single sp row with pno='P2'   

Nulls get special treatment by GROUP BY. GROUP BY considers a null as distinct from every other null.  

Each row that has a null in one of its grouping columns forms a separate group.  Grouping 

the sp table on the qty column produces 3 groups:   

sno  pno  qty     

S1   P1   NULL  NULL Group  

S2   P1   200   
200 Group   

S3   P2   200   

S3   P1   1000   1000 Group   

The row where qty is null forms a separate group.   

GROUP BY Clause  
GROUP BY is an optional clause in a query. It follows the WHERE clause or the FROM clause if the 

WHERE clause is missing. A query containing a GROUP BY clause is a Grouping Query. The GROUP BY 

clause has the following general format:   

GROUP BY column-1 [, column-2] ...  

column-1 and column-2 are the grouping columns. They must be names of columns from tables in the FROM 

clause; they can't be expressions.   

GROUP BY operates on the rows from the FROM clause as filtered by the WHERE clause. It collects the 

rows into groups based on common values in the grouping columns. Except nulls, rows with the same set of 

values for the grouping columns are placed in the same group. If any grouping column for a row contains a 

null, the row is given its own group.   

For example,   

SELECT pno  

FROM sp  

GROUP BY pno  

pno  

  

  



  41  

GEU 

 

P1   

P2   

In Grouping Queries, the select list can only contain grouping columns, plus literals, outer references and 

expression involving these elements. Non-grouping columns from the underlying FROM tables cannot be 

referenced directly. However, non-grouping columns can be used in the select list as arguments to Set 

Functions. Set Functions summarize columns from the underlying rows of a group.  Set Functions  
Set Functions are special summarizing functions used with Grouping Queries and Aggregate Queries. They 

summarize columns from the underlying rows of a group or aggregate.   

Using the Group By example from above, grouping the sp table on the pno column:   

sno  pno  qty     

S1   P1   NULL  

'P1' Group  S2   P1   200   

S3   P1   1000   

S3   P2   200   'P2' Group  

A Set Function can compute the total quantities for each group:   

sno  pno  qty     qty total  

S1   P1   NULL  

'P1' Group  1200   S2   P1   200   

S3   P1   1000   

S3   P2   200   'P2' Group  
200   

        

Null columns are ignored in computing the summary. The Set Function -- SUM, computes the arithmetic 

sum of a numeric column in a set of grouped/aggregate rows. For example,   

SELECT pno, SUM(qty)  

FROM sp  

GROUP BY pno  

pno      

P1   1200 

P2   200   

Set Functions have the following general format:   

set-function ( [DISTINCT|ALL] column-1 ) set-function 

is:   

COUNT -- count of rows   

SUM -- arithmetic sum of numeric column   

AVG -- arithmetic average of numeric column; should be SUM()/COUNT().   

MIN -- minimum value found in column   

MAX -- maximum value found in column   

The result of the COUNT function is always integer. The result of all other Set Functions is the same data 

type as the argument.   

  

  

  

  

  



  42  

GEU 

 

The Set Functions skip columns with nulls, summarizing non-null values. COUNT counts rows with nonnull 

values, AVG averages non-null values, and so on. COUNT returns 0 when no non-null column values are 

found; the other functions return null when there are no values to summarize.   

A Set Function argument can be a column or a scalar expression.   

The DISTINCT and ALL specifiers are optional. ALL specifies that all non-null values are summarized; it 

is the default. DISTINCT specifies that distinct column values are summarized; duplicate values are skipped. 

Note: DISTINCT has no effect on MIN and MAX results.   

COUNT also has an alternate format:   

COUNT(*)  

... which counts the underlying rows regardless of column contents.   

Set Function examples:   

SELECT pno, MIN(sno), MAX(qty), AVG(qty), COUNT(DISTINCT sno)  

FROM sp  

GROUP BY pno  

pno                 

P1   S1  1000  600  3 

P2   S3  200   200  1 

SELECT sno, COUNT(*) parts  

FROM sp  

GROUP BY sno  

sno  parts  

S1   1   

S2   1   

S3   2   

HAVING Clause  
The HAVING Clause is associated with Grouping Queries and Aggregate Queries. It is optional in both 

cases. In Grouping Queries, it follows the GROUP BY clause. In Aggregate Queries, HAVING follows the 

WHERE clause or the FROM clause if the WHERE clause is missing.   

The HAVING Clause has the following general format:   

HAVING predicate  

Like the WHERE Clause, HAVING filters the query result rows. WHERE filters the rows from the FROM 

clause. HAVING filters the grouped rows (from the GROUP BY clause) or the aggregate row (for Aggregate 

Queries).  predicate is a logical expression referencing grouped columns and set functions. It has the same 

restrictions as the select list for Grouping Queries and Aggregate Queries.   

If the Having predicate evaluates to true for a grouped or aggregate row, the row is included in the query 

result, otherwise, the row is skipped (not included in the query result).   

For example,   

SELECT sno, COUNT(*) parts  

FROM sp  

GROUP BY sno  

HAVING COUNT(*) > 1  

sno  parts  

S3   2   

Aggregate Queries  



  43  

GEU 

 

An Aggregate Query can use Set Functions and a HAVING Clause. It is similar to a Grouping Query except 

there are no grouping columns. The underlying rows from the FROM and WHERE clauses are grouped into 

a single aggregate row. An Aggregate Query always returns a single row, except when the Having clause is 

used.   

An Aggregate Query is a query containing Set Functions in the select list but no GROUP BY clause. The Set 

Functions operate on the columns of the underlying rows of the single aggregate row. Except for outer 

references, any columns used in the select list must be arguments to Set Functions.   

An aggregate query may also have a Having clause. The Having clause filters the single aggregate row. If 

the Having predicate evaluates to true, the query result contains the aggregate row. Otherwise, the query 

result contains no rows.   

For example,   

SELECT COUNT(DISTINCT pno) number_parts, SUM(qty) total_parts FROM 

sp  

number_parts  total_parts  

2   1400   

Subqueries are often Aggregate Queries. For example, parts with suppliers:   

SELECT *  

FROM p  

WHERE (SELECT COUNT(*) FROM sp WHERE sp.pno=p.pno) > 0  

pno  descr   color  

P1   Widget  Blue   

P2   Widget  Red   

Parts with multiple suppliers:   

SELECT *  

FROM p  

WHERE (SELECT COUNT(DISTINCT sno) FROM sp WHERE sp.pno=p.pno) > 1  

pno  descr   color  

P1   Widget  Blue   

Union Queries  

The SQL UNION operator combines the results of two queries into a composite result. The component 

queries can be SELECT/FROM queries with optional WHERE/GROUP BY/HAVING clauses. The UNION 

operator has the following general format:   

query-1 UNION [ALL] query-2  

query-1 and query-2 are full query specifications. The UNION operator creates a new query result that 

includes rows from each component query.   

By default, UNION eliminates duplicate rows in its composite results. The optional ALL specifier requests 

that duplicates be retained in the UNION result.   

The component queries of a Union Query can also be Union Queries themselves. Parentheses are used for 

grouping queries.   

The select lists from the component queries must be union-compatible. They must match in degree (number 

of columns). For Entry Level SQL92, the column descriptor (data type and precision, scale) for each 

corresponding column must match. The rules for Intermediate Level SQL92 are less restrictive.  Union-

Compatible Queries  
For Entry Level SQL92, each corresponding column of both queries must have the same column descriptor 

in order for two queries to be union-compatible. The rules are less restrictive for Intermediate Level SQL92. 



  44  

GEU 

 

It supports automatic conversion within type categories. In general, the resulting data type will be the broader 

type. The corresponding columns need only be in the same data type category:   

Character (String) -- fixed/variable length   

Bit String -- fixed/variable length   

Exact Numeric (fixed point) -- integer/decimal   

Approximate Numeric (floating point) -- float/double   

Datetime -- sub-category must be the 

same,  o  Date  o  Time   

 o  Timestamp  

 Interval -- sub-category must be the same,  

o  Year-month  o  Day-time  

UNION Examples SELECT 

* FROM sp  

UNION  

SELECT CAST(' ' AS VARCHAR(5)), pno, CAST(0 AS INT)  

FROM p  

WHERE pno NOT IN (SELECT pno FROM sp)  

sno  pno  qty   

S1   P1   NULL  

S2   P1   200   

S3   P1   1000   

S3   P2   200   

    P3   0   

  

  

SQL Modification Statements  

The SQL Modification Statements make changes to database data in tables and columns. There are 3 

modification statements:   

INSERT Statement -- add rows to tables   

UPDATE Statement -- modify columns in table rows   

DELETE Statement -- remove rows from tables   

INSERT Statement  

The INSERT Statement adds one or more rows to a table. It has two formats:   

INSERT INTO table-1 [(column-list)] VALUES (value-list) 

and,   

INSERT INTO table-1 [(column-list)] (query-specification)  

The first form inserts a single row into table-1 and explicitly specifies the column values for the row. The 

second form uses the result of query-specification to insert one or more rows into table-1. The result rows 

from the query are the rows added to the insert table. Note: the query cannot reference table-1.   

Both forms have an optional column-list specification. Only the columns listed will be assigned values. 

Unlisted columns are set to null, so unlisted columns must allow nulls. The values from the VALUES Clause 

  

  

  

  

  

  

  

  

  



  45  

GEU 

 

(first form) or the columns from the query-specification rows (second form) are assigned to the 

corresponding column in column-list in order.   

If the optional column-list is missing, the default column list is substituted. The default column list contains 

all columns in table-1 in the order they were declared in CREATE TABLE, or CREATE VIEW.   

VALUES Clause  
The VALUES Clause in the INSERT Statement provides a set of values to place in the columns of a new 

row. It has the following general format:   

VALUES ( value-1 [, value-2] ... ) value-1 and value-2 are Literal Values or Scalar Expressions 

involving literals. They can also specify NULL.   

The values list in the VALUES clause must match the explicit or implicit column list for INSERT in degree 

(number of items). They must also match the data type of corresponding column or be convertible to that 

data type.   

INSERT Examples  
INSERT INTO p (pno, color) VALUES ('P4', 'Brown')  

 Before     After   

pno  descr   color   

=>  

pno  descr   color   

P1   Widget  Blue   P1   Widget  Blue   

P2   Widget  Red   P2   Widget  Red   

P3   Dongle  Green  P3   Dongle  Green  

  

P4   NULL   Brown 

  

INSERT INTO sp  

SELECT s.sno, p.pno, 500  

FROM s, p  

WHERE p.color='Green' AND s.city='London'  

 Before     After   

= 

>  

  

  

UPDATE Statement  

The UPDATE statement modifies columns in selected table rows. It has the following general format:  

UPDATE table-1 SET set-list [WHERE predicate]  

The optional WHERE Clause has the same format as in the SELECT Statement. See WHERE Clause. The 

WHERE clause chooses which table rows to update. If it is missing, all rows are in table-1 are updated.   

The set-list contains assignments of new values for selected columns.   

The SET Clause expressions and WHERE Clause predicate can contain subqueries, but the subqueries cannot 

reference table-1. This prevents situations where results are dependent on the order of processing.   

sno  pno  qty   

S1   P1   NULL  

S2   P1   200   

S3   P1   1000   

S3   P2   200   

S2   P3   500   

sno  pno  qty   

S1   P1   NULL  

S2   P1   200   

S3   P1   1000   

S3   P2   200   



  46  

GEU 

 

SET Clause  
The SET Clause in the UPDATE Statement updates (assigns new value to) columns in the selected table 

rows. It has the following general format:   

SET column-1 = value-1 [, column-2 = value-2] ...  

column-1 and column-2 are columns in the Update table. value-1 and value-2 are expressions that can 

reference columns from the update table. They also can be the keyword -- NULL, to set the column to null.  

Since the assignment expressions can reference columns from the current row, the expressions are evaluated 

first. After the values of all Set expressions have been computed, they are then assigned to the referenced 

columns. This avoids results dependent on the order of processing.   

UPDATE Examples  
UPDATE sp SET qty = qty + 20  

 Before     After   

sno  pno  qty   

= 

>  

sno  pno  qty   

S1   P1   NULL  S1   P1   NULL  

S2   P1   200   S2   P1   220   

S3   P1   1000   S3   P1   1020   

S3   P2   200   S3   P2   220   

    

UPDATE s  

SET name = 'Tony', city = 'Milan'  

WHERE sno = 'S3'  

 Before     After   

sno  name  city   

=>  

sno  name  city   

S1   Pierre  Paris   S1   Pierre  Paris   

S2   John   London  S2   John   London  

S3   Mario  Rome   S3   Tony   Milan   

    

DELETE Statement  

The DELETE Statement removes selected rows from a table. It has the following general format:  DELETE 

FROM table-1 [WHERE predicate]  

The optional WHERE Clause has the same format as in the SELECT Statement. See WHERE Clause. The 

WHERE clause chooses which table rows to delete. If it is missing, all rows are in table-1 are removed.  The 

WHERE Clause predicate can contain subqueries, but the subqueries cannot reference table-1. This prevents 

situations where results are dependent on the order of processing.   

DELETE Examples  
DELETE FROM sp WHERE pno = 'P1'  

 Before     After   



  47  

GEU 

 

 =   

>  

  

DELETE FROM p WHERE pno NOT IN (SELECT pno FROM sp)  

 Before     After   

  

=>  

  

  

  

  

SQL-Transaction Statements  

SQL-Transaction Statements control transactions in database access. This subset of SQL is also called the 

Data Control Language for SQL (SQL DCL).  There are 2 SQL-Transaction Statements:   

COMMIT Statement -- commit (make persistent) all changes for the current transaction   

ROLLBACK Statement -- roll back (rescind) all changes for the current transaction   

Transaction Overview  

A database transaction is a larger unit that frames multiple SQL statements. A transaction ensures that the 

action of the framed statements is atomic with respect to recovery.   

A SQL Modification Statement has limited effect. A given statement can only directly modify the contents 

of a single table (Referential Integrity effects may cause indirect modification of other tables.) The upshot is 

that operations which require modification of several tables must involve multiple modification statements. 

A classic example is a bank operation that transfers funds from one type of account to another, requiring 

updates to 2 tables. Transactions provide a way to group these multiple statements in one atomic unit.   

In SQL92, there is no BEGIN TRANSACTION statement. A transaction begins with the execution of a  

SQL-Data statement when there is no current transaction. All subsequent SQL-Data statements until  

COMMIT or ROLLBACK become part of the transaction. Execution of a COMMIT Statement or 

ROLLBACK Statement completes the current transaction. A subsequent SQL-Data statement starts a new 

transaction.   

In terms of direct effect on the database, it is the SQL Modification Statements that are the main consideration 

since they change data. The total set of changes to the database by the modification statements in a transaction 

are treated as an atomic unit through the actions of the transaction. The set of changes either:   

Is made fully persistent in the database through the action of the COMMIT Statement, or  Has 

no persistent effect whatever on the database, through:   

o the action of the ROLLBACK Statement,   

o abnormal termination of the client requesting the transaction, or   

o abnormal termination of the transaction by the DBMS. This may be an action by the system 

(deadlock resolution) or by an administrative agent, or it may be an abnormal termination of 

the DBMS itself. In the latter case, the DBMS must roll back any active transactions during 

recovery.  

sno  pno  qty   

S1   P1   NULL  

S2   P1   200   

S3   P1   1000   

S3   P2   200   

sno  pno  qty  

S3   P2   200 

pno  descr   color  

P1   Widget  Blue   

P2   Widget  Red   

P3   Dongle  Green  

pno  descr   color  

P1   Widget  Blue   

P2   Widget  Red   

  

  

  

  



  48  

GEU 

 

The DBMS must ensure that the effect of a transaction is not partial. All changes in a transaction must be 

made persistent, or no changes from the transaction must be made persistent.  Transaction Isolation  
In most cases, transactions are executed under a client connection to the DBMS. Multiple client connections 

can initiate transactions at the same time. This is known as concurrent transactions.   

In the relational model, each transaction is completely isolated from other active transactions. After initiation, 

a transaction can only see changes to the database made by transactions committed prior to starting the new 

transaction. Changes made by concurrent transactions are not seen by SQL DML query and modification 

statements. This is known as full isolation or Serializable transactions.   

SQL92 defines Serializable for transactions. However, full serialized transactions can impact performance. 

For this reason, SQL92 allows additional isolation modes that reduce the isolation between concurrent 

transactions. SQL92 defines 3 other isolation modes, but support by existing DBMSs is often incomplete 

and doesn't always match the SQL92 modes. Check the documentation of your DBMS for more details.  

SQL-Schema Statements in Transactions  
The 3rd type of SQL Statements - SQL-Schema Statements, may participate in the transaction mechanism. 

SQL-Schema statements can either be:   

included in a transaction along with SQL-Data statements,   

required to be in separate transactions, or  ignored by the 

transaction mechanism (can't be rolled back).   

SQL92 leaves the choice up to the individual DBMS. It is implementation defined behavior.  COMMIT 

Statement  

The COMMIT Statement terminates the current transaction and makes all changes under the transaction 

persistent. It commits the changes to the database. The COMMIT statement has the following general format:   

COMMIT [WORK]  

WORK is an optional keyword that does not change the semantics of COMMIT.  ROLLBACK 

Statement  

The ROLLBACK Statement terminates the current transaction and rescinds all changes made under the 

transaction. It rolls back the changes to the database. The ROLLBACK statement has the following general 

format:   

ROLLBACK [WORK]  

WORK is an optional keyword that does not change the semantics of ROLLBACK.  

  

  

SQL-Schema Statements  

SQL-Schema Statements provide maintenance of catalog objects for a schema -- tables, views and privileges. 

This subset of SQL is also called the Data Definition Language for SQL (SQL DDL).  There are 6 SQL-

Schema Statements:   

CREATE TABLE Statement -- create a new base table in the current schema   

CREATE VIEW Statement -- create a new view table in the current schema   

DROP TABLE Statement -- remove a base table from the current schema   

DROP VIEW Statement -- remove a view table from the current schema   

GRANT Statement -- grant access privileges for objects in the current schema to other users  

REVOKE Statement -- revoke previously granted access privileges for objects in the current schema 

from other users   

Schema Overview  

  

  

  

  

  

  

  

  

  



  49  

GEU 

 

A relational database contains a catalog that describes the various elements in the system. The catalog divides 

the database into sub-databases known as schemas. Within each schema are database objects -- tables, views 

and privileges.   

The catalog itself is a set of tables with its own schema name - definition_schema. Tables in the catalog 

cannot be modified directly. They are modified indirectly with SQL-Schema statements.  Tables  
The database table is the root structure in the relational model and in SQL. A table (called a relation in 

relational) consists of rows and columns. In relational, rows are called tuples and columns are called 

attributes. Tables are often displayed in a flat format, with columns arrayed horizontally and rows vertically:   

 C o l u m n s   

R  

o    

w  

  

 s   

  

  

Database tables are a logical structure with no implied physical characteristics. Primary among the various 

logical tables is the base table. A base table is persistent and self contained, that is, all data is part of the table 

itself with no information dynamically derived from other tables.   

A table has a fixed set of columns. The columns in a base table are not accessed positionally but by name, 

which must be unique among the columns of the table. Each column has a defined data type, and the value 

for the column in each row must be from the defined data type or null. The columns of a table are accessed 

and identified by name.   

A table has 0 or more rows. A row in a base table has a value or null for each column in the table. The rows 

in a table have no defined ordering and are not accessed positionally. A table row is accessed and identified 

by the values in its columns.   

In SQL92, base tables can have duplicate rows (rows where each column has the same value or null). 

However, the relational model does not recognize tables with duplicate rows as valid base tables (relations). 

The relational model requires that each base table have a unique identifier, known as the Primary Key. The 

primary key for a table is a designated set of columns which have a unique value for each table row. For a 

discussion of Primary Keys, see Entity Integrity under CREATE TABLE below.  A base table is defined 

using the CREATE TABLE Statement. This statement places the table description in the catalog and 

initializes an internal entity for the actual representation of the base table.  Example base table - s:   

sno  name  city   

S1   Pierre  Paris   

S2   John   London  

S3   Mario  Rome   

The s table records suppliers. It has 3 defined columns:   

sno -- supplier number, an unique identifier that is the primary 

key  name -- the name of the supplier  city -- the city where the 

supplier is located   

At the current time, there are 3 rows.   

                           

                           

                           

                           

                           

  

  

  



  50  

GEU 

 

Other types of tables in the system are derived tables. SQL-Data statements use internally derived tables in 

computing results. A query is in fact a derived table. For instance, the query operator - Union, combines two 

derived tables to produce a third one. Much of the power of SQL comes from the fact that its higher level 

operations are performed on tables and produce a table as their result.   

Derived tables are less constrained than base tables. Column names are not required and need not be unique. 

Derived tables may have duplicate rows. Views are a type of derived table that are cataloged in the database.   

Views  
A view is a derived table registered in the catalog. A view is defined using a SQL query. The view is 

dynamically derived, that is, its contents are materialized for each use. Views are added to the catalog with 

the CREATE VIEW Statement.   

Once defined in the catalog, a view can substitute for a table in SQL-Data statements. A view name can be 

used instead of a base table name in the FROM clause of a SELECT statement. Views can also be the subject 

of a modification statement with some restrictions.   

A SQL Modification Statement can operate on a view if it is an updatable view. An updatable view has the 

following restrictions on its defining query:   

The query FROM clause can reference a single table (or view)  The single table in the 

FROM clause must be:  o  a base table,  o  a view that is also an updatable view, or  o 

 a nested query that is updatable, that is, it follows the rules for an updatable view query.  The 

query must be a basic query, not a:   

o  Grouping Query,  o 

 Aggregate Query, or  

o  Union Query.  

 The select list cannot contain:  o the 

DISTINCT specifier,  o an 

Expression, or  o duplicate 

column references  

Subqueries are acceptable in updatable views but cannot reference the underlying base table for the view's 

FROM clause.  Privileges  
SQL92 defines a SQL-agent as an implementation-dependent entity that causes the execution of SQL 

statements. Prior to execution of SQL statements, the SQL-agent must establish an authorization identifier 

for database access. An authorization identifier is commonly called a user name.   

A DBMS user may access database objects (tables, columns, views) as allowed by the privileges assigned to 

that specific authorization identifier. Access privileges may be granted by the system (automatic) or by other 

users.   

System granted privileges include:   

 All privileges on a table to the user that created the table. This includes the privilege to grant privileges 

on the table to other users.   

 SELECT (readonly) privilege on the catalog (the tables in the schema - definition_schema). This is 

granted to all users.   

User granted privileges cover privileges to access and modify tables and their columns. Privileges can be 

granted for specific SQL-Data Statements -- SELECT, INSERT, UPDATE, DELETE.  CREATE TABLE 

Statement  

The CREATE TABLE Statement creates a new base table. It adds the table description to the catalog. A base 

table is a logical entity with persistence. The logical description of a base table consists of:   

  

  

  

  

  

  



  51  

GEU 

 

Schema -- the logical database schema the table resides in   

Table Name -- a name unique among tables and views in the Schema   

Column List -- an ordered list of column declarations (name, data type)  Constraints 

-- a list of constraints on the contents of the table   

The CREATE TABLE Statement has the following general format:   

CREATE TABLE table-name ({column-descr|constraint} [,{column-descr|constraint}]...) 
table-name is the new name for the table. column-descr is a column declaration. constraint is a table 
constraint.   

The column declaration can include optional column constraints. The declaration has the following general 

format:   

column-name data-type [column-constraints]  

column-name is the name of the column and must be unique among the columns of the table. data-type 

declares the type of the column. Data types are described below. column-constraints is an optional list of 

column constraints with no separators.  Constraints  
Constraint specifications add additional restrictions on the contents of the table. They are automatically 

enforced by the DBMS. The column constraints are:   

 NOT NULL -- specifies that the column can't be set to null. If this constraint is not specified, the 

column is nullable, that is, it can be set to null. Normally, primary key columns are declared as NOT 

NULL.   

 PRIMARY KEY -- specifies that this column is the only column in the primary key. There can be only 

one primary key declaration in a CREATE TABLE. For primary keys with multiple columns, use the 

PRIMARY KEY table constraint. See Entity Integrity below for a detailed description of primary 

keys.   

UNIQUE -- specifies that this column has a unique value or null for all rows of the table.   

REFERENCES -- specifies that this column is the only column in a foreign key. For foreign keys 

with multiple columns, use the FOREIGN KEY table constraint. See Referential Integrity below for a 

detailed description of primary keys.   

 CHECK -- specifies a user defined constraint on the table. See the table constraint - CHECK, below.   

The table constraints are:   

 PRIMARY KEY -- specifies the set of columns that comprise the primary key. There can be only one 

primary key declaration in a CREATE TABLE Statement. See Entity Integrity below for a detailed 

description of primary keys.   

 UNIQUE -- specifies that a set of columns have unique values (or nulls) for all rows in the table. The 

UNIQUE specifier is followed by a parenthesized list of column names, separated by commas.   

FOREIGN KEY -- specifies the set of columns in a foreign key. See Referential Integrity below for a 

detailed description of foreign keys.   

 CHECK -- specifies a user defined constraint, known as a check condition. The CHECK specifier is 

followed by a predicate enclosed in parentheses. For Intermediate Level SQL92, the CHECK 

predicate can only reference columns from the current table row, with no subqueries. Many DBMSs 

support subqueries in the check predicate.   

The check predicate must evaluate to true before a modification or addition of a row takes place. The 

check is effectively made on the contents of the table after the modification. For INSERT Statements, 

the predicate is evaluated as if the INSERT row were added to the table. For UPDATE Statements, 

the predicate is evaluated as if the row were updated. For DELETE Statements, the predicate is 

  

  

  

  

  

  

  

  

  

  

  

  



  52  

GEU 

 

evaluated as if the row were deleted (Note: A check predicate is only useful for DELETE if a 

subquery is used.)   

Data Type  
This subsection describes data type specifications. The data type categories are:   

 Character (String) -- fixed or variable length character strings. The character set is implementation 

defined but often defaults to ASCII.   

 Numeric -- values representing numeric quantities. Numeric values are divided into these two broad 

categories:   

o Exact (also known as fixed-point) -- Exact numeric values have a fixed number of digits to 

the left of the decimal point and a fixed number of digits to the right (the scale). The total 

number of digits on both sides of the decimal are the precision. A special subset of exact 

numeric types with a scale of 0 is called integer.   

o Approximate (also known as floating-point) -- Approximate numeric values that have a fixed 

precision (number of digits) but a floating decimal point.  

All numeric types are signed.   

 Datetime -- Datetime values include calendar and clock values (Date, Time, Timestamp) and intervals. 

The datetime types are:   

o Date -- calendar date with year, month and day   

o Time -- clock time with hour, minute, second and fraction of second, plus a timezone 

component (adjustment in hours, minutes)   

o Timestamp -- combination calendar date and clock time with year, month, day, hour, minute, 

second and fraction of second, plus a timezone component (adjustment in hours, minutes)   

o Interval -- intervals represent time and date intervals. They are signed. An interval value can 

contain a subset of the interval fields, for example - hour to minute, year, day to second. 

Interval types are subdivided into:   

▪ year-month intervals -- may contain years, months or combination years/months 

value.   

▪ day-time intervals -- days, hours, minutes, seconds, fractions of second.  

Data type declarations have the following general format:   

Character (String)   

 CHAR  [(length)]  

 CHARACTER  [(length)]  

 VARCHAR  (length)  

CHARACTER VARYING (length)   

length specifies the number of characters for fixed size strings (CHAR, CHARACTER); 

spaces are supplied for shorter strings. If length is missing for fixed size strings, the default length is 

1. For variable size strings (VARCHAR, CHARACTER VARYING), length is the maximum size of 

the string. Strings exceeding length are truncated on the right.  Numeric   

SMALLINT  

INT  

INTEGER   

The integer types have default binary precision -- 15 for SMALLINT and 31 for INT, 

INTEGER.   

 NUMERIC  (  precision  [,  scale]  )  

DECIMAL ( precision [, scale] )   

  

  

  



  53  

GEU 

 

Fixed point types have a decimal precision (total number of digits) and scale (which cannot 

exceed the precision). The default scale is 0. NUMERIC scales must be represented exactly.  

DECIMAL values can be stored internally with a larger scale (implementation defined).   

 FLOAT  [(precision)]  

REAL  

DOUBLE   

The floating point types have a binary precision (maximum significant binary digits). 

Precision values are implementation dependent for REAL and DOUBLE, although the standard states 

that the default precision for DOUBLE must be larger than for REAL. FLOAT also uses an 

implementation defined default for precision (commonly this is the same as for REAL), but the binary 

precision for FLOAT can be explicit.  Datetime   

DATE  

 TIME  [(scale)]  [WITH  TIME  ZONE]  

TIMESTAMP [(scale)] [WITH TIME ZONE]   

TIME and TIMESTAMP allow an optional seconds fraction (scale). The default scale for 

TIME is 0, for TIMESTAMP 6. The optional WITH TIME ZONE specifier indicates that the 

timezone adjustment is stored with the value; if omitted, the current system timezone is 

assumed.   

INTERVAL interval-qualifier   

  

Interval Qualifier  
An interval qualifier defines the specific type of an interval value. The qualifier for an interval type declares 

the sub-fields that comprise the interval, the precision of the highest (left-most) sub-field and the scale of the 

SECOND sub-field (if any).   

Intervals are divided into sub-types -- year-month intervals and day-time intervals. Year-month intervals can 

only contain the sub-fields - year and month. Day-time intervals can contain day, hour, minute, second. The 

interval qualifier has the following formats:  YEAR [(precision)] [ TO MONTH ]  

  

MONTH [(precision)]  

  

{DAY|HOUR|MINUTE} [(precision)] [ TO SECOND [(scale)] ]  

  

DAY [(precision)] [ TO {HOUR|MINUTE} ]  

  

HOUR [(precision)] [ TO MINUTE ]  

  

SECOND [ (precision [, scale]) ]  

The default precision is 2. The default scale is 6.  Entity 

Integrity  
As mentioned earlier, the relational model requires that each base table have a Primary Key. SQL92, on the 

other hand, allows a table to created without a primary key. The advice here is to create all tables with 

primary keys.   

A primary key is a constraint on the contents of a table. In relational terms, the primary key maintains Entity 

Integrity for the table. It constrains the table as follows,   

 For a given row, the set of values for the primary key columns must be unique from all other rows in 

the table,   

No primary key column can contain a null, and   

A table can have only one primary key (set of primary key columns).   

  

  

  



  54  

GEU 

 

Note: SQL92 does not require the second restriction on nulls in the primary key. However, it is required for 

a relational system.   

Entity Integrity (Primary Keys) is enforced by the DBMS and ensures that every row has a proper unique 

identifier. The contents of any column in the table with Entity Integrity can be uniquely accessed with 3 

pieces of information:   

table identifier  

primary key value  

column name   

This capability is crucial to a relational system. Having a clear, consistent identifier for table rows (and their 

columns) distinguishes relational systems from all others. It allows the establishment of relationships 

between tables, also crucial to relational systems. This is discussed below under Referential Integrity.   

The primary key constraint in the CREATE STATEMENT has two forms. When the primary key consists 

of a single column, it can be declared as a column constraint, simply - PRIMARY KEY, attached to the 

column descriptor. For example:   

sno VARCHAR(5) NOT NULL PRIMARY KEY  

As a table constraint, it has the following format:   

PRIMARY KEY ( column-1 [, column-2] ...) column-1 and column-2 are the 

names of the columns of the primary key. For example,  PRIMARY KEY (sno, pno)  

The order of columns in the primary key is not significant, except as the default order for the FOREIGN KEY 

table constraint.  

Referential Integrity  
Foreign keys provide relationships between tables in the database. In relational, a foreign key in a table is a 

set of columns that reference the primary key of another table. For each row in the referencing table, the 

foreign key must match an existing primary key in the referenced table. The enforcement of this constraint 

is known as Referential Integrity.  Referential Integrity requires that:   

 The columns of a foreign key must match in number and type the columns of the primary key in the 

referenced table.   

 The values of the foreign key columns in each row of the referencing table must match the values of 

the corresponding primary key columns for a row in the referenced table.   

The one exception to the second restriction is when the foreign key columns for a row contain nulls. Since 

primary keys should not contain nulls, a foreign key with nulls cannot match any row in the referenced table. 

However, a row with a foreign key of all nulls (all foreign key columns contain null) is allowed in the 

referencing table. It is a null reference.   

Like other constraints, the referential integrity constraint restricts the contents of the referencing table, but it 

also may in effect restrict the contents of the referenced table. When a row in a table is referenced (through 

its primary key) by a foreign key in a row in another table, operations that affect its primary key columns 

have side-effects and may restrict the operation. Changing the primary key of or deleting a row which has 

referencing foreign keys would violate the referential integrity constraints on the referencing table if allowec 

to proceed. This is handled in two ways,   

 The referenced table is restricted from making the change (and violating referential integrity in the 

referencing table), or   

 Rows in the referencing table are modified so the referential integrity constraint is maintained.   

These actions are controlled by the referential integrity effects declarations, called referential triggers by 

SQL92. The referential integrity effect actions defined for SQL are:   

  

  

  

  

  

  

  



  55  

GEU 

 

 NO ACTION -- the change to the referenced (primary key) table is not performed. This is the default.   

 CASCADE -- the change to the referenced table is propagated to the referencing (foreign key) table.   

 SET NULL -- the foreign key columns in the referencing table are set to null.   

Update and delete have separate action declarations. For CASCADE, update and delete also operate 

differently:   

 For update (the primary key column values have been modified), the corresponding foreign key 

columns for referencing rows are set to the new values.   

 For delete (the primary key row is deleted), the referencing rows are deleted.   

A referential integrity constraint in the CREATE STATEMENT has two forms. When the foreign key 

consists of a single column, it can be declared as a column constraint, like:   

column-descr REFERENCES references-specification  

As a table constraint, it has the following format:   

FOREIGN KEY (column-list) REFERENCES references-specification column-list is the 

referencing table columns that comprise the foreign key. Commas separate column names in the list. Their 

order must match the explicit or implicit column list in the references-specification.  The references-

specification has the following format:  table-2 [ ( referenced-columns ) ]  

        [ ON UPDATE { CASCADE | SET NULL | NO ACTION }]  

        [ ON DELETE { CASCADE | SET NULL | NO ACTION }]  

The order of the ON UPDATE and ON DELETE clauses may be reversed. These clauses declare the effect 

action when the referenced primary key is updated or deleted. The default for ON UPDATE and ON 

DELETE is NO ACTION.   

table-2 is the referenced table name (primary key table). The optional referenced-columns list the columns 

of the referenced primary key. Commas separate column names in the list. The default is the primary key list 

in declaration order.   

Contrary to the relational model, SQL92 allows foreign keys to reference any set of columns declared with 

the UNIQUE constraint in the referenced table (even when the table has a primary key). In this case, the 

referenced-columns list is required.   

Example table constraint for referential integrity (for the sp table):   

FOREIGN KEY (sno)  

REFERENCES s(sno)  

ON DELETE NO ACTION  

ON UPDATE CASCADE  

CREATE TABLE Examples  
Creating the example tables:   

CREATE TABLE s  

(sno VARCHAR(5) NOT NULL PRIMARY KEY,  

 name VARCHAR(16),  

 city VARCHAR(16)  

)  

  

CREATE TABLE p  

(pno VARCHAR(5) NOT NULL PRIMARY KEY,  

 descr VARCHAR(16),  

 color VARCHAR(8)  

)  

  

  

  

  

  

  



  56  

GEU 

 

CREATE TABLE sp  

(sno VARCHAR(5) NOT NULL REFERENCES s,  

pno VARCHAR(5) NOT NULL REFERENCES p,  

qty INT,  

 PRIMARY KEY (sno, pno)  

)  

Create for sp with a constraint that the qty column can't be negative:   

CREATE TABLE sp  

(sno VARCHAR(5) NOT NULL REFERENCES s,  

pno VARCHAR(5) NOT NULL REFERENCES p,  

qty INT CHECK (qty IS NULL OR qty >= 0),  

 PRIMARY KEY (sno, pno)  

)  

CREATE VIEW Statement  

The CREATE VIEW statement creates a new database view. A view is effectively a SQL query stored in the 

catalog. The CREATE VIEW has the following general format:   

  

CREATE VIEW view-name [ ( column-list ) ] AS query-1  

            [ WITH [CASCADED|LOCAL] CHECK OPTION ]  

view-name is the name for the new view. column-list is an optional list of names for the columns of the view, 

comma separated. query-1 is any SELECT statement without an ORDER BY clause. The optional WITH 

CHECK OPTION clause is a constraint on updatable views.   

column-list must have the same number of columns as the select list in query-1. If column-list is omitted, all 

items in the select list of query-1 must be named. In either case, duplicate column names are not allowed for 

a view.   

The optional WITH CHECK OPTION clause only applies to updatable views. It affects SQL INSERT and 

UPDATE statements. If WITH CHECK OPTION is specified, the WHERE predicate for query-1 must 

evaluate to true for the added row or the changed row.   

The CASCADED and LOCAL specifiers apply when the underlying table for query-1 is another view. 

CASCADED requests that WITH CHECK OPTION apply to all underlying views (to any level.) LOCAL 

requests that the current WITH CHECK OPTION apply only to this view. LOCAL is the default.   

CREATE VIEW Examples  
Parts with suppliers:   

CREATE VIEW supplied_parts AS  

            SELECT *  

            FROM p  

            WHERE pno IN (SELECT pno FROM sp)  

       WITH CHECK OPTION Access 

example:   

SELECT * FROM supplied_parts  

pno  descr   color  

P1   Widget  Red   

P2   Widget  Blue   

Joined view:   

CREATE VIEW part_locations (part, quantity, location) AS  

            SELECT pno, qty, city  

            FROM sp, s  



  57  

GEU 

 

            WHERE sp.sno = s.sno Access 

examples:   

SELECT * FROM part_locations  

part  quantity  location  

P1   NULL   Paris   

P1   200   London  

P1   1000   Rome   

P2   200   Rome   

SELECT part, quantity  

FROM part_locations  

WHERE location = 'Rome'  

part  quantity 

P1   1000   

P2   200   

DROP TABLE Statement  

The DROP TABLE Statement removes a previously created table and its description from the catalog. It has 

the following general format:   

DROP TABLE table-name {CASCADE|RESTRICT}  

table-name is the name of an existing base table in the current schema. The CASCADE and RESTRICT 

specifiers define the disposition of other objects dependent on the table. A base table may have two types of 

dependencies:   

A view whose query specification references the drop table.   

Another base table that references the drop table in a constraint - a CHECK constraint or 

REFERENCES constraint.   

RESTRICT specifies that the table not be dropped if any dependencies exist. If dependencies are found, an 

error is returned and the table isn't dropped.   

CASCADE specifies that any dependencies are removed before the drop is performed:   

 Views that reference the base table are dropped, and the sequence is repeated for their dependencies.   

 Constraints in other tables that reference this table are dropped; the constraint is dropped but the table 

retained.   

DROP VIEW Statement  

The DROP VIEW Statement removes a previously created view and its description from the catalog. It has 

the following general format:   

DROP VIEW view-name {CASCADE|RESTRICT} view-name is the name of an existing view in 

the current schema. The CASCADE and RESTRICT specifiers define the disposition of other objects 

dependent on the view. A view may have two types of dependencies:   

A view whose query specification references the drop view.   

A base table that references the drop view in a constraint - a CHECK constraint.   

RESTRICT specifies that the view not be dropped if any dependencies exist. If dependencies are found, an 

error is returned and the view isn't dropped.   

  

  

  

  

  

  



  58  

GEU 

 

CASCADE specifies that any dependencies are removed before the drop is performed:   

 Views that reference the drop view are dropped, and the sequence is repeated for their dependencies.   

 Constraints in base tables that reference this view are dropped; the constraint is dropped but the table 

retained.   

GRANT Statement  

The GRANT Statement grants access privileges for database objects to other users. It has the following 

general format:   

GRANT privilege-list ON [TABLE] object-list TO user-list privilege-list is either ALL 

PRIVILEGES or a comma-separated list of properties: SELECT, INSERT, UPDATE, DELETE. object-list 

is a comma-separated list of table and view names. user-list is either PUBLIC or a comma-separated list of 

user names.   

The GRANT statement grants each privilege in privilege-list for each object (table) in object-list to each user 

in user-list. In general, the access privileges apply to all columns in the table or view, but it is possible to 

specify a column list with the UPDATE privilege specifier:  UPDATE [ ( column-1 [, column-2] ... ) ]  

If the optional column list is specified, UPDATE privileges are granted for those columns only.   

The user-list may specify PUBLIC. This is a general grant, applying to all users (and future users) in the 

catalog.   

Privileges granted are revoked with the REVOKE Statement.   

The optional specificier WITH GRANT OPTION may follow user-list in the GRANT statement. WITH 

GRANT OPTION specifies that, in addition to access privileges, the privilege to grant those privileges to 

other users is granted.   

GRANT Statement Examples  
GRANT SELECT ON s,sp TO PUBLIC  

  

GRANT SELECT,INSERT,UPDATE(color) ON p TO art,nan  

  

GRANT SELECT ON supplied_parts TO sam WITH GRANT OPTION REVOKE 

Statement  

The REVOKE Statement revokes access privileges for database objects previously granted to other users.  

It has the following general format:   

REVOKE privilege-list ON [TABLE] object-list FROM user-list  

The REVOKE Statement revokes each privilege in privilege-list for each object (table) in object-list from 

each user in user-list. All privileges must have been previously granted.   

The user-list may specify PUBLIC. This must apply to a previous GRANT TO PUBLIC.   

REVOKE Statement Examples  
REVOKE SELECT ON s,sp FROM PUBLIC  

  

REVOKE SELECT,INSERT,UPDATE(color) ON p FROM art,nan  

  

REVOKE SELECT ON supplied_parts FROM sam  

  

PL/SQL  

  

PL/SQL stands for Procedural Language/SQL.PL/SQL extends SQL by adding control Structures found in 

other procedural language.PL/SQL combines the flexibility of SQL with Powerful feature of 3rd generation 

Language. The procedural construct and database access Are present in PL/SQL.PL/SQL can be used in both 

in database in Oracle Server and in Client side application development tools.  

  

  

  



  59  

GEU 

 

Advantages of PL/SQL  

  

Support for SQL, support for object-oriented programming,, better performance, portability, higher 

productivity, Integration with Oracle  

  

a] Supports the declaration and manipulation of object types and collections. 

b] Allows the calling of external functions and procedures. c] Contains new 

libraries of built in packages.  

d] with PL/SQL , an multiple sql statements can be processed in a single  command line  statement.  

  

  

PL/SQL Datatypes  

  

Scalar Types  

BINARY_INTEGER ,DEC,DECIMAL,DOUBLE ,,PRECISION,FLOAT,INT,INTEGER,NATURAL,  

NATURALN,NUMBER, NUMERIC, PLS_INTEGER,POSITIVE,POSITIVEN,REAL,SIGNTYPE,  

SMALLINT,CHAR,CHARACTER,LONG,LONG  

RAW,NCHAR,NVARCHAR2,RAW,ROWID,STRING, VARCHAR,VARCHAR2,  

   

Composite Types  

TABLE, VARRAY, RECORD  

  

LOB Types  

BFILE, BLOB, CLOB, NCLOB  

  

Reference Types  

REF CURSOR   

  

BOOLEAN, DATE  

  

DBMS_OUTPUT.PUT_LINE:   

  

It is a pre-defined package that prints the message inside the parenthesis          

  

ANONYMOUS PL/SQL BLOCK.  

  

The text of an Oracle Forms trigger is an anonymous PL/SQL block. It consists of three 

sections:  A declaration of variables, constants, cursors and exceptions which is optional.  

A section of executable statements.  

A section of exception handlers, which is optional.  

  

  

ATTRIBUTES  

  

Allow us to refer to data types and objects from the database.PL/SQL variables and Constants can have 

attributes. The main advantage of using Attributes is even if you  Change the data definition, you don’t need 

to change in the application.  

  

  

  

  



  60  

GEU 

 

%TYPE     

  

It is used when declaring variables that refer to the database columns.  

Using %TYPE to declare variable has two advantages. First, you need not know the exact datatype of 

variable. Second, if the database definition of  variable changes, the datatype of variable  changes accordingly 

at run time.  

  

%ROWTYPE  

  

The %ROWTYPE attribute provides a record type that represents a row in a table (or view). The record 

can store an entire row of data selected from the table or fetched from a cursor or strongly typed cursor 

variable.  

EXCEPTION  

  

An Exception is raised when an error occurs. In case of an error then normal execution stops and the control 

is immediately transferred to the exception handling part of the PL/SQL Block.  

  

Exceptions are designed for runtime handling, rather than compile time handling. Exceptions improve 

readability by letting you isolate error-handling routines.  

  

When an error occurs, an exception is raised. That is, normal execution stops and control transfers to the 

exception-handling part of your PL/SQL block or subprogram. Internal exceptions are raised implicitly 

(automatically) by the runtime system. User-defined exceptions must  be raised explicitly by RAISE 

statements, which can also raise predefined exceptions.   

  

To handle raised exceptions, you write separate routines called exception handlers. After an exception 

handler runs, the current block stops executing and the enclosing block resumes with the next statement. If 

there is no enclosing block, control returns to the host environment.   

  

Exception Types  

  

  

1. Predefined Exceptions  

  

An internal exception is raised implicitly whenever your PL/SQL program violates an Oracle rule or 

exceeds a system-dependent limit. Every Oracle error has a number, but exceptions must be handled by 

name. So, PL/SQL predefines some common Oracle errors as exceptions. For example, PL/SQL raises the 

predefined exception NO_DATA_FOUND if a SELECT INTO statement returns no rows.  

  

2. User – Defined exceptions   

  

User – defined exception must be defined and explicitly raised by the user  
  

EXCEPTION_INIT        

  

A named exception can be associated with a particular oracle error. This can be used to trap the error 

specifically.  

  

PRAGMA EXCEPTION_INIT(exception name, Oracle_error_number);  



  61  

GEU 

 

  

The pragma EXCEPTION_INIT associates an exception name with an Oracle, error number. That allows 

you to refer to any internal exception by name and to write a specific handler  

  

RAISE_APPLICATION_ERROR  

  

The procedure raise_application_error lets you issue user-defined error messages from stored subprograms. 

That way, you can report errors to your application and avoid returning unhandled exceptions.  

  

To call raise_application_error, you use the syntax  

  

raise_application_error(error_number, message[, {TRUE | FALSE}]); where error_number is a negative 

integer in the range -20000 .. -20999 and message is a character string up to 2048 bytes long.  

  



  62  

GEU 

 

  



  63  

GEU 

 

  

Using SQLCODE and SQLERRM  

  

For internal exceptions, SQLCODE returns the number of the Oracle error. The number that SQLCODE 

returns is negative unless the Oracle error is no data found, in which case SQLCODE returns +100. 

SQLERRM returns the corresponding error message. The message begins with the Oracle error code.  

  

Unhandled Exceptions  

  

PL/SQL returns an unhandled exception error to the host environment, which determines the outcome.  

  

When Others   

  

It is used when all exception are to be trapped.  

  

CURSORS  
  

Oracle allocates an area of memory known as context area for the processing of SQL 

statements. The pointer that points to the context area is a cursor.  
  

Merits  

1] Allowing to position at specific rows of the result set.  

2] Returning one row or block of rows from the current position in the result set.   

3] Supporting data modification to the rows at the current position in the result set.  

  

TYPES  
  

1] STATIC CURSOR  
  
SQL statement is determined at design time.  

  

   A] EXPLICIT CURSOR  

  

Multiple row SELECT statement is called as an explicit cursor.  
  

To execute a multi-row query, Oracle opens an unnamed work area that stores 

processing                

 information. To access the information, you can use an explicit cursor, which names  

the work   

 area.  
  

            Usage - If the SELECT statement returns more that one row then explicit cursor 

should be                           used.  

           Steps  
  



  64  

GEU 

 

 Declare a cursor  

 Open a cursor  

 Fetch data from the cursor  

 Close the cursor  
  

EXPLICIT CURSOR ATTRIBUTES  

 %FOUND (Returns true if the cursor has a value)  

 %NOTFOUND (Returns true if the cursor does not contain any value)  

 %ROWCOUNT (Returns the number of rows selected by the cursor)  

 %ISOPEN (Returns the cursor is opened or not)  
  

CURSOR FOR LOOP  

  

The CURSOR FOR LOOP lets you implicitly OPEN a cursor, FETCH each row returned by the query 

associated with the cursor and CLOSE the cursor when all rows have been processed.  

SYNTAX  

          FOR <RECORD NAME> IN <CURSOR NAME> LOOP  

                 STATEMENTS  

          END LOOP;  

           To refer an element of the record use <record name. Column name>  
  

Parameterized Cursor  

  

A cursor can take parameters, which can appear in the associated query wherever constants can appear. 

The formal parameters of a cursor must be IN parameters. Therefore, they cannot return values to actual 

parameters. Also, you cannot impose the constraint NOT NULL on a cursor parameter.  

  

The values of cursor parameters are used by the associated query when the cursor is opened.  

  

B .IMPLICIT CURSOR  

  

An IMPLICIT cursor is associated with any SQL DML statement that does not have a explicit cursor 

associated with it.  

  

This includes:  
  

 All INSERT statements  

 All UPDATE statements  

 All DELETE statements  

 All SELECT .. INTO statements  
  

  

  

IMPLICIT CURSOR ATTRIBUTES  

 "  SQL%FOUND (Returns true if the DML operation is valid)  



  65  

GEU 

 

 "  SQL%NOTFOUND (Returns true if the DML operation is invalid)  

 "  SQL%ROWCOUNT (Returns the no. of rows affected by the DML operation)  

  

2] DYNAMIC CURSOR  

  

Dynamic Cursor can be used along with DBMS_SQL package .A SQL statement is dynamic, if it is 

constructed at run time and then executed.  

  

3] REF CURSOR  

  

Declaring a cursor variable creates a pointer, not an item. In PL/SQL, a pointer has datatype REF X, where 

REF is short for REFERENCE and X stands for a class of objects. Therefore, a cursor variable has datatype 

REF CURSOR.  

  

To execute a multi-row query, Oracle opens an unnamed work area that stores processing information. To 

access the information, you can use an explicit cursor, which names the work area. Or, you can use a cursor 

variable, which points to the work area.  

Mainly, you use cursor variables to pass query result sets between PL/SQL stored subprograms and various 

clients. Neither PL/SQL nor any of its clients owns a result set; they simply share a pointer to the query work 

area in which the result set is stored. For example, an OCI client, Oracle Forms application, and Oracle 

Server can all refer to the same work area.  

  

a] Strong Cursor  - Whose return type specified.  

b] Week Cursor  - Whose return type not specified.  

  

Dref  

It is the 'deference operator.Like VALUE,it return the value of an object,Unlike value.  

Dref's input is a REF to an column in a table and you want reterive the target instead of the pointer,you 

DREF.  

  

  

  

  

  

  

  

  

  
  
  
  
  

FUNCTIONS  
  

Function is a subprogram that computes and returns a single value.  
A function is a subprogram that computes a value. Functions and procedures are structured alike, except that 

functions have a RETURN clause.  

  



  66  

GEU 

 

FUNCTION NAME [(PARAMETER[, PARAMETER, ...])] RETURN DATATYPE IS  

[LOCAL DECLARATIONS]  

BEGIN  

EXECUTABLE STATEMENTS  

[EXCEPTION  

EXCEPTION HANDLERS]  

  
A function has two parts: the specification and the body. The function specification begins with the keyword 

FUNCTION and ends with the RETURN clause, which specifies the datatype of the result value. Parameter 

declarations are optional. Functions that take no parameters are written without parentheses. The function 

body begins with the keyword IS and ends with the keyword END followed by an optional function name.  

  

Using the RETURN Statement  

  

The RETURN statement immediately completes the execution of a subprogram and returns control to the 

caller. Execution then resumes with the statement following the subprogram call. (Do not confuse the 

RETURN statement with the RETURN clause in a function spec, which specifies the datatype of the return 

value.)  

  

A subprogram can contain several RETURN statements, none of which need be the last lexical statement. 

Executing any of them completes the subprogram immediately. However, to have multiple exit points in a 

subprogram is a poor programming practice.  

  

In procedures, a RETURN statement cannot contain an expression. The statement simply returns control to 

the caller before the normal end of the procedure is reached.  

  

However, in functions, a RETURN statement must contain an expression, which is evaluated when the 

RETURN statement is executed. The resulting value is assigned to the function identifier, which acts like a 

variable of the type specified in the RETURN clause. Observe how the function balance returns the 

balance of a specified bank account:  

  

COMPARING PROCEDURES AND FUNCTIONS  

  

Procedure              Function  

  

Execute as a PL/SQL statement          Invoke as part of an expression  

  

No RETURN datatype             Must contain a RETURN datatype  

  

Can return none, one or many values        Must return a single value  

  

Can not use in SQL Statement                                       Can Use in SQL Statements  

  

Benefits of Stored Procedures and Functions  

  

In addition to modularizing application development, stored procedures and functions have the 

following benefits:  

  

• Improved performance  



  67  

GEU 

 

Avoid reparsing for multiple users by exploiting the shared SQL area  

Avoid PL/SQL parsing at run-time by parsing at compile time  

Reduce the number of calls to the database and decrease network traffic by bundling 

commands  

• Improved maintenance.  

Modify routines online without interfering with other users  

Modify one routine to affect multiple applications  

Modify one routine to eliminate duplicate testing  

• Improved data security and integrity  

 Control indirect access to database objects from non privileged users with security privileges  

 Ensure that related actions are performed together, or not at all, by funneling activity for 

related tables through a    single path  

  

  

LIST ALL PROCEDURES AND FUNCTIONS  

   

SELECT OBJECT_NAME, OBJECT_TYPE FROM USER_OBJECTS WHERE OBJECT_TYPE IN 

(’PROCEDURE’, ’FUNCTION’) ORDER BY OBJECT_NAME  

  

LIST THE CODE OF PROCEDURES AND FUNCTIONS  

  

SELECT TEXT  FROM USER_SOURCE  WHERE NAME = ’QUERY_EMP’  ORDER BY LINE;  

  

PACKAGE  

  

A package is a schema object that groups logically related PL/SQL types, items, and subprograms. Packages 

usually have two parts, a specification and a body,  

  

Merits  

  

Simplify security   No need to issue GRANT for every procedure in a package Limit 

recompilation    Change the body of the procedure or function without changing 

specification  

 Performance      First call to package loads whole package into memory  
Information Hiding With packages, you can specify which types, items, and subprograms are  public 

(visible and accessible) or private (hidden and inaccessible).  

Hiding       Implementation details from users, you protect the integrity of the 

package.  

  

Parts of Package  
  
A.PACKAGE SPECIFICATION  

  

The package specification contains public declarations. The scope of these declarations is local to your 

database schema and global to the package. So, the declared items are accessible from your application and 

from anywhere in the package.  

  
B.PACKAGE BODY  

  

  

  

  

  

  



  68  

GEU 

 

  

The package body implements the package specification. That is, the package body contains the definition 

of every cursor and subprogram declared in the package specification. Keep in mind that subprograms 

defined in a package body are accessible outside the package only if their specifications also appear in the 

package specification.  

  

PACKAGE OVERLOADING  

  

PL/SQL allows two or more packaged subprograms to have the same name. This option is useful when you 

want a subprogram to accept parameters that have different datatypes.  

  

PRIVATE VERSUS PUBLIC ITEMS  

  

PRIVATE  

The package body can also contain private declarations, which define types and items necessary for the 

internal workings of the package. The scope of these declarations is local to the package body. Therefore, 

the declared types and items are inaccessible except from within the package body. Unlike a package spec, 

the declarative part of a package body can contain subprogram bodies.  

  

PUBLIC  

Such items are termed public. When you must maintain items throughout a session or across transactions, 

place them in the declarative part of the package body.  

  

  

  

  

  

Advantages of Packages  

  

Packages offer several advantages: modularity, easier application design, information hiding, added 

functionality, and better performance.  

  

 Modularity  

Packages let you encapsulate logically related types, items, and subprograms in a named PL/SQL 

module. Each package is easy to understand, and the interfaces between packages are simple, clear, 

and well defined. This aids application development.  

  

 Easier Application Design  

When designing an application, all you need initially is the interface information in the package 

specs. You can code and compile a spec without its body. Then, stored subprograms that reference 

the package can be compiled as well. You need not define the package bodies fully until you are 

ready to complete the application.  

  

 Information Hiding  

With packages, you can specify which types, items, and subprograms are public (visible and 

accessible) or private (hidden and inaccessible). For example, if a package contains four 

subprograms, three might be public and one private. The package hides the implementation of the 

private subprogram so that only the package (not your application) is affected if the implementation 



  69  

GEU 

 

changes. This simplifies maintenance and enhancement. Also, by hiding implementation details 

from users, you protect the integrity of the package.  

  

 Added Functionality  

Packaged public variables and cursors persist for the duration of a session. So, they can be shared 

by all subprograms that execute in the environment. Also, they allow you to maintain data across 

transactions without having to store it in the database.  

  

 Better Performance  

When you call a packaged subprogram for the first time, the whole package is loaded into memory. 

So, later calls to related subprograms in the package require no disk I/O. Also, packages stop 

cascading dependencies and thereby avoid unnecessary recompiling. For example, if you change 

the implementation of a packaged function, Oracle need not recompile the calling subprograms 

because they do not depend on the package body.  

  

ORACLE SUPPLIED PACKAGES  

  

• Provided with the Oracle Server  

• Extend the functionality of the database  

• Allow access to certain SQL features normally restricted for PL/SQL  

  

Use Serially Reusable Packages  

  

To help you manage the use of memory, PL/SQL provides the pragma SERIALLY_ REUSABLE, which 

lets you mark some packages as serially reusable. You can so mark a package if its state is needed only 

for the duration of one call to the server (for example, an OCI call to the server or a server-to-server 

RPC).   

  

The global memory for such packages is pooled in the System Global Area (SGA), not allocated to 

individual users in the User Global Area (UGA). That way, the package work area can be reused. When the 

call to the server ends, the memory is returned to the pool. Each time the package is reused, its public 

variables are initialized to their default values or to NULL.  

  

The maximum number of work areas needed for a package is the number of concurrent users of that 

package, which is usually much smaller than the number of logged-on users. The increased use of SGA 

memory is more than offset by the decreased use of UGA memory. Also, Oracle ages-out work areas not in 

use if it needs to reclaim SGA memory.  

  

  

For bodiless packages, you code the pragma in the package spec using the following syntax:  

  

PRAGMA SERIALLY_REUSABLE;  

  

For packages with a body, you must code the pragma in the spec and body. You cannot code the pragma 

only in the body. The following example shows how a public variable in a serially reusable package 

behaves across call boundaries:  

  

CREATE PACKAGE pkg1 IS  

PRAGMA SERIALLY_REUSABLE;  



  70  

GEU 

 

num NUMBER := 0;  

PROCEDURE init_pkg_state(n NUMBER);  

PROCEDURE print_pkg_state;  

END pkg1;  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  



  71  

GEU 

 

  

  

  

  

DATABASE TRIGGERS  

  

A Trigger defines an action the database should take when some database related event 

occurs. Triggers may be used to supplement declarative referential integrity, to enforce 

complex business rules.  
A database trigger is a stored subprogram associated with a table. You can have Oracle automatically fire 

the trigger before or after an INSERT, UPDATE, or DELETE statement affects the table.  

  

Triggers are executed when a specific data manipulation command are performed on specific tables  

  

ROW LEVEL TRIGGERS  

  

Row Level triggers execute once for each row in a transaction. Row level triggers are create using FOR 

EACH ROW clause in the create trigger command.  

  

STATEMENT LEVEL TRIGGERS  

  

Statement Level triggers execute once for each transaction. For example if you insert 100 rows in a single 

transaction then statement level trigger will be executed once.  

  

BEFORE and AFTER Triggers  

  

Since triggers occur because of events, they may be set to occur immediately before or after those events.  

  

The following table shows the number of triggers that you can have for a table. The number of triggers you 

can have a for a table is 14 triggers.  

  

The following table shows the number of triggers that you can have for a table. The number of triggers you 

can have a  for a table is 14 triggers.  

  

  ROW LEVEL TRIGGER  STATEMENT 

TRIGGER  

LEVEL  

  

BEFORE  

  

INSERT  

UPDATE  

DELETE  

  

INSERT  

UPDATE  

DELETE  

 

  

INSTEAD OF  
  

  

INSTEAD OF ROW  

    



  72  

GEU 

 

  

AFTER  

  

INSERT  

UPDATE  

DELETE  

  

INSERT  

UPDATE  

DELETE  

 

  
ADVANTAGES OF TRIGGERS  

   

Feature     

  

Enhancement  

Security     

  

The Oracle Server allows table access to users or roles. Triggers allow  table access  

according to data values.  

Auditing     

  

The Oracle Server tracks data operations on tables. Triggers track values for data  

operations on tables.  

Data integrity  

integrity   

The Oracle Server enforces integrity constraints. Triggers implement complex  

rules.  

  

Referential integrity  The Oracle Server enforces standard referential integrity rules. Triggers implement  

nonstandard functionality.  

  

Table replication    The Oracle Server copies tables asynchronously into snapshots. Triggers copy tables  

    

      Synchronously into replicas.  

  

Derived data  The Oracle Server computes derived data values manually. Triggers compute derived data 

values automatically.  

  

Event logging     The Oracle Server logs events explicitly. Triggers log events transparently.  

  

Syntax:  
  

CREATE OR REPLACE TRIGGER <TRIGGER NAME> [ BEFORE | AFTER |  

INSTEAD OF ]  

(INSERT OR UPDATE OR DELETE) ON <TABLE NAME>  REFERENCING OLD AS 

OLD | NEW AS NEW  FOR EACH ROW  

BEGIN END;  
Example 1:  

  

CREATE OR REPLACE TRIGGER MY_TRIG BEFORE INSERT OR UPDATE OR 

DELETE ON  

     DETAIL FOR EACH ROW  

    BEGIN  

      IF LTRIM(RTRIM(TO_CHAR(SYSDATE,'DAY')))='FRIDAY' THEN  

        IF INSERTING THEN  



  73  

GEU 

 

          RAISE_APPLICATION_ERROR(-20001,'INSERT IS NOT POSSIBLE');         

ELSIF UPDATING THEN  

          RAISE_APPLICATION_ERROR(-20001,'UPDATE IS NOT POSSIBLE');         

ELSIF DELETING THEN  

          RAISE_APPLICATION_ERROR(-20001,'DELETE IS NOT POSSIBLE');  

        END IF;  

      END IF;  

   END;  
  

Example 2:  

CREATE OR REPLACE TRIGGER MY_TRIG AFTER INSERT ON  

    ITEM FOR EACH ROW  

  DECLARE  

    MITEMID NUMBER;  

    MQTY NUMBER;  

   BEGIN  

    SELECT ITEMID INTO MITEMID FROM STOCK WHERE ITEMID = :NEW.ITEMID;  

       UPDATE STOCK SET QTY=QTY+:NEW.QTY WHERE ITEMID=:NEW.ITEMID;  

   EXCEPTION WHEN NO_DATA_FOUND THEN  

      INSERT INTO STOCK VALUES (:NEW.ITEMID, :NEW.QTY);        END;  
  
  
  
  

Example 3:  

CREATE OR REPLACE TRIGGER MY_TRIG AFTER DELETE ON  

    EMP FOR EACH ROW  

BEGIN  

      INSERT INTO EMP_BACK VALUES (:OLD.EMPNO, :OLD.ENAME, :OLD.SAL, 

:OLD.DEPTNO);  

END;  
  

Example 4:  
CREATE OR REPLACE TRIGGER TR02 BEFORE INSERT OR UPDATE OR DELETE ON EMP100 

DECLARE  

  D1 VARCHAR(3);  

BEGIN  

  D1:=TO_CHAR(SYSDATE,'DY');  

  

  IF D1 IN('TUE','MON') THEN   

    RAISE_APPLICATION_ERROR(-20025,'TRY ON ANOTHER DAY');  

  END IF;  

END;  

  



  74  

GEU 

 

  

Example 5:  
CREATE OR REPLACE TRIGGER TR01 AFTER DELETE ON DEPT200  FOR EACH ROW  

BEGIN  

INSERT INTO DEPT1 VALUES (:OLD.DEPTNO,:OLD.DNAME,:OLD.LOC);  

END;  

/  

SHOW ERR  

  

Example 6:  
CREATE OR REPLACE TRIGGER TR03 AFTER UPDATE ON EMP FOR EACH ROW BEGIN  

UPDATE EMP100 SET SAL=:OLD.SAL*2  WHERE EMPNO=:OLD.EMPNO; END;  

/  

SHOW ERR  

  

Example 7:  
CREATE OR REPLACE TRIGGER TR05 AFTER UPDATE ON  EMP100  

DECLARE  

U1 VARCHAR2(50);  

BEGIN  

SELECT USER INTO U1 FROM DUAL;  

INSERT INTO USER1 VALUES(U1,SYSDATE,'UPDATE');  

END;  

/  

SHOW ERR  

  

Example 8:  
CREATE OR REPLACE TRIGGER TR06 AFTER DELETE ON  EMP100  

DECLARE  

U1 VARCHAR2(50);  

BEGIN  

SELECT USER INTO U1 FROM DUAL;  

INSERT INTO USER1 VALUES(U1,SYSDATE,'DELETE');  

END;  

/  

SHOW ERR  

  

  

  

SYSTEM TRIGGER  

  

LOGON and LOGOFF Trigger Example  

   

You can create this trigger to monitor how often you log on and off, or you may want to write a report on 

how long you are logged on for. If you were a DBA wanting to do this, you would replace SCHEMA with  

DATABASE.  

  

1. CREATE OR REPLACE TRIGGER LOGON_TRIG  



  75  

GEU 

 

AFTER logon ON SCHEMA  
BEGIN  

INSERT INTO log_trig_table 5 (user_id, log_date, action) VALUES (user, sysdate, ’Logging on’); 

END;  

  

2. CREATE OR REPLACE TRIGGER LOGOFF_TRIG  
BEFORE logoff ON SCHEMA  
BEGIN  

INSERT INTO log_trig_table  (user_id, log_date, action) VALUES (user, sysdate, ’Logging off’); 

END;  

  

CALL STATEMENT  

   

This allows you to call a stored procedure, rather than coding the PL/SQL body in the trigger itself.  

  

CREATE [OR REPLACE] TRIGGER trigger_name  timing  
event1 [OR event2 OR event3]  
ON table_name  
[REFERENCING OLD AS old | NEW AS new]  
[FOR EACH ROW]  
[WHEN condition]  
CALL procedure_name  

  

CREATE TRIGGER TEST3  
BEFORE INSERT ON EMP  
CALL LOG_EXECUTION  

  

INSTEAD OF TRIGGERS  
INSTEAD OF triggers to tell ORACLE what to do instead of performing the actions that executed  the 

trigger. An INSTEAD OF trigger can be used for a view. These triggers can be used to overcome the 

restrictions placed by oracle on any view which is non updateable.  

  

  

Example:  

  

CREATE OR REPLACE VIEW EMP_DEPT AS SELECT A.DEPTNO,B.EMPNO FROM DEPT 

A,EMP B WHERE A.DEPTNO=B.DEPTNO  

  

CREATE OR REPLACE TRIGGER TRIG1 INSTEAD OF INSERT ON EMP_DEPT  

REFERENCING NEW AS N FOR EACH ROW  

BEGIN  

INSERT INTO DEPT VALUES(:N.DEPTNO,'DNAME');  

INSERT INTO EMP VALUES(:N.EMPNO,'ENAME',:N.DEPTNO); END;  

  

  

  

   
  


