

Lecture Notes for Digital Electronics

1 Basic Digital Concepts
By converting continuous analog signals into a finite number of discrete states, a process
called digitization, then to the extent that the states are sufficiently well separated so that
noise does create errors, the resulting digital signals allow the following (slightly
idealized):

 storage over arbitrary periods of time flawless retrieval

and reproduction of the stored information flawless

transmission of the information

Some information is intrinsically digital, so it is natural to process and manipulate it
using purely digital techniques. Examples are numbers and words.

tithe drawback to digitization is that a single analog signal (e.g. a voltage which is a
function of time, like a stereo signal) needs many discrete states, or bits, in order to give a
satisfactory reproduction. For example, it requires a minimum of 10 bits to determine a
voltage at any given time to an accuracy of 0.1%. For transmission, one now requires 10
lines instead of the one original analog line.

tl'he explosion in digital techniques and technology has been made possible by the
incredible increase in the density of digital circuitry, its robust performance, its relatively
low cost, and its speed. 'Ithe requirement of using many bits in reproduction is no longer
an issue: Ithe more the better.

fl'his circuitry is based upon the transistor, which can be operated as a switch with two
states. Hence, the digital information is intrinsically binary. So in practice, the terms digital

1

and binary are used interchangeably. In the following sections we summarize some
conventions for defining the binary states and for doing binary arithmetic.

1.1 Binary Logic States
tllhe following table attempts to make correspondences between conventions for defining binary

logic states. In the case of the logic gates we will be using in the lab, the Low voltage state is

roughly 0—1 Volt and the High state is roughly 2.5—5 Volts. See page 475 of the text for the

exact conventions for as well as other hardware gate technologies.

Boolean Logic Boolean Algebra Voltage State

(positive true)

Voltage State

(negative true)

'[Yue (Ill) 1 High (H) Low (L)

False (F)

'l'he convention for naming these states is illustrated in Fig. 1. 'Ithe "positive true" case
is illustrated. 'l'he relationship between the logic state and label (in this case "switch open"
) at some point in the circuit can be summarized with the following:

The labelled voltage is High (Low) when the label's stated function is True (False) .
In the figure, the stated function is certainly true (switch open), and this does correspond
to a high voltage at the labelled point. (Recall that with the switch open, Ohm's Law implies
that with zero current, the voltage difference across the "pull up" resistor is zero, so that
the labelled point is at +5 Volts. With a closed switch, the labelled point is connected to
ground, with a 5 Volt drop across the resistor and a current of I V/R 5 mA through it.)

Figure 1: Illustration for labelling logic states ("positive true").

With the convention known as "negative true", the label would be changed to "switch closed"

with a bar over it: switch closed. Our statement becomes:

'The labelled voltage is Low (High) when the label's stated function is True (False) . So
in the figure, the stated function (switch closed) is true when the voltage is low. 'l'he bar is
meant to envoke the boolean inversion operation: F, É T, T, and so forth.

1.2 Binary Arithmetic
Each digit in binary is a 0 or a 1 and is called a bit, which is an abbreviation of binary digit.
There are several common conventions for representation of numbers in binary.

switch open

2

tithe most familiar is unsigned binary. An example of a 8-bit number in this case is

 0 x 27 1 x 26 + . . . + 1 x 20 +1

7910
(Generally the subscripts will be omitted, since it will be clear from the context.) 'Ito
convert from base 10 to binary, one can use a decomposition like above, or use the
following algorithm illustrated by 79: 79/2 39, remainder 1, then 39/2 19 r 1, and so forth.
'l'hen assemble all the remainders in reverse order.

tithe largest number which can be represented by n bits is 271 — 1. For example, with 4
15.

tithe most significant bit (MSB) is the bit representing the highest power of 2, and the LSB

represents the lowest power of 2.
Arithmetic with unsigned binary is analogous to decimal. For example I-bit addition

and multiplication are as follows: 0 +0 0, 0 + 1 1, 1 + 1 0, 0 x 0 0, 0 x 1 0, and

1. Note that this is different from Boolean algebra, as we shall see shortly, where 1+1= 1.

Another convention is called BCD ("binary coded decmal"). In this case each decimal
digit is separately converted to binary. 'l'herefore, since 7 01112 and 9 — 10012, then 79

BCD quite often in this course. It is quite convenient, for example, when decimal numerical
displays are used.

Yet another convention is Gray code. You have a homework problem to practice this. 'llhis is

less commonly used.

1.2.1 Representation of Negative Numbers
'llhere are two commonly used conventions for representing negative numbers.

With sign magnitude, the MSB is used to flag a negative number. So for example with
4-bit numbers we would have 0011 3 and 1011 —3. 'Ithis is simple to see, but is not good
for doing arithmetic.

With 2's complement, negative numbers are designed so that the sum of a number and its 2's

complement is zero. Using the 4-bit example again, we have 0101 5 and its 2's complement —5 =

1011. Adding (remember to carry) gives 10000 0. ('llhe 5th bit doesn't count!) Both addition and

multiplication work as you would expect using 2's complement. 'llhere are two methods for

forming the 2's complement:

1. Make the transformation 0 —+ 1 and 1 —+ 0, then add 1.

2. Add some number to —2 MSB to get the number you want. For 4-bit numbers an example of

finding the 2's complement of 5 is —5 = —8 3 + 0011 1011.

1.2.2 Hexadecimal Representation

It is very often quite useful to represent blocks of 4 bits by a single digit. 'Ithus in base 16 there is

a convention for using one digit for the numbers 0,1,2,...,15 which is called hexadecimal. It follows

decimal for 0—9, then uses letters A—F.

Decimal Binary Hex

3

o

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1

2

3

4

5

6

7

8
9

c

2 Logic Gates and Combinational Logic

2.1 Gate Types and Truth Tables
bmsic logic gates are AND, OR, NAND, NOR, XOR, INV, and BUF. last two are not

standard terms; they stand for "inverter" and "buffer" , respectively. 'llhe symbols for these
gates and their corresponding Boolean expressions are given in 'Itable 8.2 of the text which,
for convenience, is reproduced (in part) in Fig. 2.

Negative
trt*

ANO

 NAND

NOR

4

 INVERT

 BUFFER

AOB

Figure 2: 'Itable 8.2 from the text.

All of the logical gate functions, as well as the Boolean relations discussed in the next
section, follow from the truth tables for the AND and OR gates. We reproduce these below.
We also show the XOR truth table, because it comes up quite often, although, as we shall
see, it is not elemental.

A B Q

o

1

o

o
o

1

o

o

Figure 3: AND gate.

A B Q

o

1

o

o

o

1

o

1

Figure 4: OR gate.

A B Q

o

1

o

o
o

1

1

o

1

Figure 5: XOR (exclusive OR) gate.

2.2 Boolean Algebra and DeMorgan's Theorems
l

Boolean algebra can be used to formalize the combinations of binary logic states. 'lhe
fundamental relations are given in 'lhble 8.3 of the text. In these relations, A and B are

6

binary quantities, that is, they can be either logical true (T or 1) or logical false (F or 0).
Most of these relations are obvious. Here are a few of them:

Recall that the text sometimes uses an apostrophe for inversion (N). We use the standard
overbar notation (Ä).

We can use algebraic expressions to complete our definitions of the basic logic gates
we began above. Note that the Boolean operations of "multiplication" and "addition" are
defined by the truth tables for the AND and OR gates given above in Figs. 3 and 4. Using
these definitions, we can define all of the logic gates algebraically 'Ithe truth tables can also
be constructed from these relations, if necessary. See Fig. 2 for the gate symbols.

• AND: Q = AB (see Fig. 3)

(see Fig. 4)

• NAND: Q

• NOR: Q

• XOR: Q (defined by truth table Fig. 5)

• INV: Q

• BUF: Q

2.2.1 Example: Combining Gates

Let's re-express the XOR operation in terms of standard Boolean operations. 'l'he following
truth table evaluates the expression Q ÄB + AD.

 Q

o

1

o

1

o
o
1

1

o

o

1

o

o

1

o

o

o

1

1

o

We see that this truth table is identical to the one for the XOR operation. 'l'herefore, we
can write

 (1)

A schematic of this expression in terms of gates is given in Fig. 6 (as well as Fig. 8.25 of
the text). Recall that the open circles at the output or input of a gate represent inversion.

7

Figure 6: Realization of the XOR gate in terms of AND and OR gates.

2.2.2 Gate Interchangeablilty

In an example from the homework, we can make an INV gate from a 2-input NOR gate.
Simply connect the two inputs of the NOR gate together. Algebraically, if the two original
NOR gate inputs are labelled B and C, and they are combined to form A, then we have Q

Ä, which is the INV operation.
Note that an INV gate can not be made from OR or AND gates. For this reason the OR

and AND gates are not universal. So for example, no combination of AND gates can be
combined to substitute for a NOR gate. However, the NAND and NOR gates are universal.

2.2.3 DeMorgan

Perhaps the most interesting of the Boolean identities are the two known as DeMorgan's
Itheorems:

(2)

(3)

tl'hese expressions turn out to be quite useful, and we shall use them often.

An example of algebraic logic manipulation follows. It is the one mentioned at the end
of Lab 1. One is to show that an XOR gate can be composed of 4 NAND gates. From the
section above we know A Q) B ÄB + AB. Since AÄ 0 and 13B 0, we can add these,
rearrange, and apply the two DeMorgan relations to give

+B(Ä+B) A(ÄB) + A(AB) B(AB))

2.3 Symbolic Logic
tllhe two DeMorgan expressions above can be envoked using gate symbols by following
this prescription: Change gate shape (AND—OR) and invert all inputs and outputs.

By examining the two rightmost columns of Fig. 2, one sees that the transformation between

3rd and 4th columns for the gates involving AND/OR gates works exactly in this way. For

example, the DeMorgan expression AB Ä+B is represented symbolically by the equivalence

between the 3rd and 4th columns of the 2nd row ("NAND") of Fig. 2. We will go over how this

works, and some more examples, in class.

2.4 Logic Minimization and Karnaugh Maps
As we found above, given a truth table, it is always possible to write down a correct logic

expression simply by forming an OR of the ANDS of all input variables for which the output is

true (Q 1). However, for an arbitrary truth table such a procedure could produce a very lengthy

and cumbersome expression which might be needlessly inefficient to implement with gates.
'Ithere are several methods for simplification of Boolean logic expressions. 'Ithe process is

usually called "logic minimization", and the goal is to form a result which is efficient. rrwo methods

we will discuss are algebraic minimization and Karnaugh maps. For very complicated problems

8

the former method can be done using special software analysis programs. Karnaugh maps are also

limited to problems with up to 4 binary inputs.

Let's start with a simple example. 'l'he table below gives an arbitrary truth table
involving 2 logic inputs.

'Ital)le 1: Example of simple arbitrary truth table.

A B Q

o
o
1

1

o

1

o

1

1

1

o

1

l'here are two overall stategies:

1. Write down an expression directly from the truth table. Use Boolean algebra, if desired, to

simplify.

2. Use Karnaugh mapping ("K-map"). 'Ithis is only applicable if there are 4 inputs.

In our example above, we can use two different ways of writin down a result directly
from the truth table. We can write down all TRUE terms and OR the result. tl'his gives

While correct, without further simplification this expression would involve 3 2-input AND
gates, 2 inverters, and 1 3-input OR gate.

Alternatively, one can write down an expression for all of the FALSE states of the truth
table. 'I'llis is simpler in this case:

where the last step results from Eqn. 3. Presumably, the two expressions can be found to
be equivalent with some algebra. Certainly, the 2nd is simpler, and involves only an
inverter and one 2-input OR gate.

Finally, one can try a K-map solution. 'Ithe first step is to write out the truth table in the
form below, with the input states the headings of rows and columns of a table, and the
corresponding outputs within, as shown below.

rrable 2: K-map of truth table.

1

'llhe steps/rules are as follows:

9

1. Form the 2-dimensional table as above. Combine 2 inputs in a "gray code" way —

see 2nd example below.

2. Form groups of I's and circle them; the groups are rectangular and must have sides
of length 2n x 2m , where n and m are integers 0, 1, 2,

3. 'l'he groups can overlap.

4. Write down an expression of the inputs for each group.

5. OR together these expressions. 'l'hat's it.

6. Groups can wrap across table edges.

7. As before, one can alternatively form groups of (Vs to give a solution for Q.

8. 'l'he bigger the groups one can form, the better (simpler) the result.

9. tl'here are usually many alternative solutions, all equivalent, some better than others
depending upon what one is trying to optimize.

Here is one way of doing it:

'l'he two groups we have drawn are Ä and B. So the solution (as before) is:

2.4.1 K-map Example 2

Let's use this to determine which 3-bit numbers are prime. ('l'his is a homework problem.)
We assume that 0, 1, 2 are not prime. We will let our input number have digits a2a1ao.
Here is the truth table:

Here is the corresponding K-map and a solution.

Note that where two inputs are combined in a row or column that their progression follows

gray code, that is only one bit changes at a time. 'Ithe solution shown above is:

 Q al ao + ao(al + 02)
rrable 3: 3-digit prime finder.

Decimal al ao Q

o

1

2

3

4

5

6

7

o
o
o
o

1

1

1

1

o
o
1
1
o
o

1

1

o
1
o
1
o
1
o

1

o

o
1
o
1
o

1

1

10

rrable 4: K-map of truth table.

ao 00 01 11 10

o

1

o

o

o

1

1

1

2.4.2 K-map Example 3: Full Adder

In this example we will outline how to build a digital full adder. It is called "full" because
it will include a "carry-in" bit and a "carry-out" bit. 'l'he carry bits will allow a succession
of I-bit full adders to be used to add binary numbers of arbitrary length. (A half adder
includes only one carry bit.)

bi

Cout

Cin.i
1

Figure 7: Block schematic of full adder. (We name our adder the "Y

chip").

l'he scheme for the full adder is outlined in Fig. 7. Imagine that we are adding two n-bit
binary numbers. Let the inputs ai and bi be the i-th bits of the two numbers. 'lhe carry in bit
Cini represents any carry from the sum of the neighboring less significant bits at position

1. 'Ithat is, Cini 1 if bt—l 1, and is 0 otherwise. tithe sum Si at position i is therefore the
sum of at, , bi, and Cini. (Note that this is an arithmetic sum, not a Boolean OR.) A carry
for this sum sets the carry out bit, Couti 1, which then can be applied to the sum of the i +
1 bits. tl'he truth table is given below.

Cint Couti

o
o
o
o
1

1

1

1

o
o
1
1
o
o
1

1

o

1

o

1

o

1

o

1

o

1

1

o

1

o

o

1

o

1

1

1

1

With Cini 0, we see that the output sum Si is just given by the XOR operation, ai Q) bi.
And with Cini 1, then Si ai Q) bi. Perhaps the simplest way to express this relationship is
the following:

Si Cini Q) (ai bi)

'Ito determine a relatively simple expression for Couti, we will use a K-map:

 a

s

Cout

Cin

12

Cilli\ai

bi

00 01 11 10

o

1

o

o

o

1
1

1 1

11

'l'his yields

Couti aibi + Cint•ai + Cint•bi aibi + Cini(ai + bi) which

in hardware would be 2 2-input OR gates and 2 2-input AND gates.

As stated above, the carry bits allow our adder to be expanded to add any number of
bits. As an example, a 4-bit adder circuit is depicted in Fig. 8. 'Ithe sum can be 5 bits, where
the MSB is formed by the final carry out. (Sometimes this is referred to as an "overflow"
bit.)

s s s s s 4 3 2 1 0

Figure 8: Expansion of I-bit full adder to make a 4-bit adder.

2.4.3 Making a Multiplier from an Adder

In class we will discuss how to use our full adder (the "E chip") to make a multiplier.

2.5 Multiplexing
A multiplexer (MUX) is a device which selects one of many inputs to a single output. 'llhe
selection is done by using a,n input address. Hence, a MUX can take many data bits and
put them, one at a time, on a single output data line in a particular sequence. tlthis is an
example of transforming parallel data to serial data. A demultiplexer (DEMUX) performs
the inverse operation, taking one input and sending it to one of many possible outputs.
Again the output line is selected using an address.

A MUX-DEMUX pair can be used to convert data to serial form for transmission, thus
reducing the number of required transmission lines. 'l'he address bits are shared by the
MUX and DEMUX at each end. If n data bits are to be transmitted, then after multiplexing,
the number of separate lines required is log2 n + 1, compared to n without the conversion
to serial. Hence for large n the saving can be substantial. In Lab 2, you will build such a
system.

13

Multiplexers consist of two functionally separate components, a decoder and some
switches or gates. 'Ithe decoder interprets the input address to select a single data bit. We
use the example of a 4-bit MUX in the following section to illustrate how this works.

2.5.1 A 4-bit MUX Design

We wish to design a 4-bit multiplexer. 'l'he block diagram is given in Fig. 9. 'llhere are 4
input data bits Do 1)3, 2 input address bits Ao and Al, one serial output data bit Q, and
(optional) enable bit E which is used for expansion (discussed later). First we will design
the decoder.

Figure 9: Block diagram of 4-bit MUX.

We need m address bits to specify 2m data bits. So in our example, we have 2 address
bits. 'l'he truth table for our decoder is straightforward:

Al CO C3

'llhe implementation of the truth table with standard gates is also straightforward, as
given in Fig. 10.

Figure 10: Decoder for the 4-bit MUX.

14

For the "gates/switches" part of the MUX, the design depends upon whether the input
data lines carry digital or analog signals. We will discuss the analog possibility later. 'llhe
digital case is the usual and simplest case. Here, the data routing can be accomplished
simply by forming 2-input ANDS of the decoder outputs with the corresponding data input,
and then forming an OR of these terms. Explicitly,

 Q + CID 1 + C'2D'2 + C3D3

Finally, if an ENABLE line E is included, it is simply ANDed with the righthand side
of this expression. 'I'llis can be used to switch the entire MUX IC off/on, and is useful for
expansion to more bits. as we shall see.

15

3 Flip-Flops and Introductory Sequential Logic
We now turn to digital circuits which have states which change in time, usually according
to an external clock. 'l'he flip-flop is an important element of such circuits. It has the
interesting property of memory: It can be set to a state which is retained until explicitly
reset.

3.1 Simple Latches
'llhe following 3 figures are equivalent representations of a simple circuit. In general these
are called flip-flops. Specifically, these examples are called SR ("set-reset") flip-flops, or
SR latches.

 s s

Figure 11: '[two equivalent versions of an SR flil)-flop (or "SR latch").

s
Q

Q

Figure 12: Yet another equivalent SR flip-flop, as used in Lab 3.

'l'he truth table for the SR latch is given below.

 S R Q Q

1

o

o

1

o

1

1

o

o

1

o

1

1

o

1

o

1
o

o

1 etains

previous

16

'l'he state described by the last row is clearly problematic, since Q and Q should not be
the same value. 'llhus, the S R 1 inputs should be avoided.

l*Yom the truth table, we can develop a sequence such as the following:

1 (set)

— 1 (Q 1 state retained:

"memory')

0 (reset)

0 (Q 0 state retained)

In alternative language, the first operation "writes" a

true state into one bit of memory. It can subsequently be

"read" until it is erased by the reset operation of the third

line.

3.1.1 Latch Example: Debounced Switch

A useful example of the simple SR flip-flop is the debounced

switch, like the ones on the lab prototyping boards. 'llhe

point is that any simple mechanical switch will bounce as it

makes contact. Hence, an attempt to provide a simple

transition from digital HIGH to LOW with a mechanical switch

may result in an unintended series of transitions between the

two states as the switch damps to its final position. So, for

example, a digital counter connected to Q would count every

bounce, rather than the single push of the button which was

intended.
'l'he debounced configuration and corresponding truth table

are given below. When the switch is moved from A to B, for

example, the output Q goes LOW. A bounce would result in A B

1, which is the "retain previous" state of the flip-flop.

Hence, the bounces do not appear at the output Q.

Figure 13: A debounced switch.

17

1

o

1

o

1

1

o

1 retains

previous not

allowed

3.2 Clocked Flip-flops
We will soon get used to the idea of a clock as an essential element of digital circuitry.
When we speak of a clock signal, we mean a sequence of evenly spaced digital high and
low signals proceeding at a fixed frequency. 'Ithat is, the clock is a continuous sequence of
square wave pulses. 'Ithere are a number of reasons for the importance of the clock. Clearly
it is essential for doing any kind of counting or timing operation. But, its most important
role is in providing synchronization to the digital circuit. Each clock pulse may represent
the transition to a new digital state of a "state machine" (simple processor) we will soon
encounter. Or a clock pulse may correspond to the movement of a bit of data from one
location in memory to another. A digital circuit coordinates these various functions by the
synchronization provided by a single clock signal which is shared throughout the circuit. A
more sophisticated example of this concept is the clock of a computer, which we have come
to associate with processing speed (e.g. 330 MHz for typical current generation commercial
processors.

We can include a clock signal to our simple SR flip-flop, as shown in Fig. 14. 'Ithe truth table,

given below, follows directly from our previous SR flip-flop, except now we include a label for

then clock pulse for the inputs and the output. tllhis is because the inputs have no effect unless they

coincide with a clock pulse. (Note that a specified clock pulse conventionally refers to a HIGH

level.) As indicated in the truth table, the inputs SIC Rib 0 represent the flip-flop memory state.

Significantly, one notes that the interval between clock pulses also corresponds to the "retain

previous state" of the flip-flop. Hence the information encoded by the one bit of flip-flop memory

can only be modified in synchronization with the clock.

CLK

Figure 14: A clocked SR flirflop.

18

1

o

o

1

o

1

o

1

1

con-I
avoid

We are now set to make a subtle transition for our next version of the clocked flip-flop.
'llhe flip-flop memory is being used to retain the state between clock pulses. In fact, the
state set up by the S and R inputs can be represented by a single input we call "data", or
D. 'l'his is shown in Fig. 15. Note that we have explicitly eliminated the bad S R 1 state
with this configuration.

We can override this data input and clock sychronization scheme by including the "jam
set" (S) and "jam reset" (R) inputs shown in Fig. 15. 'l'hese function just as before with the
unclocked SR flip-flop. Note that these "jam" inputs go by various names. So sometimes
the set is called "preset" and reset is called "clear" , for example.

s

D

Figure 15: A "ID-type transparent" flip-flop with jam set and reset.

A typical timing diagram for this flirflop is given in Fig. 16. Note that the jam reset
signal R overrides any action of the data or clock inputs.

CLK

Q

Figure 16: Example of timing diagram for the transparent D flip-flop. (It is assumed that S
is held HIGH throughout.)

19

3.'2.1 Edge Triggered Flip-Flops

We need to make one final modification to our clocked flip-flop. Note that in the timing
diagram of Fig. 16 that there is quite a bit of apparent ambiguity regarding exactly when
the D input gets latched into Q. If a transition in D occurs sometime during a clock HIGH,
for example, what will occur? 'Ithe answer will depend upon the characteristics of the
particular electronics being used. 'l'his lack of clarity is often unacceptable. As a point of
terminology, the clocked flip-flop of Fig. 15 is called a transparent D-type flip-flop or latch.
(An example in is the 7475 IC.)

'llhe solution to this is the edge-triggered flip-flop. We will discuss how this works for one

example in class. It is also discussed some in the text. rrriggering on a clock rising or falling edge

is similar in all respects to what we have discussed, except that it requires 2—3 coupled SR-type

flip-flops, rather than just one clocked SR flip-flop. 'Ithe most common type is the positive-edge

triggered D-type flip-flop. 'l'his latches the D input upon the clock transition from LOW to HIGH.

An example of this in is the 7474 IC. It is also common to employ a negative-edge triggered D-

type flip-flop, which latches the D input upon the clock transition from HIGH to LOW.

'l'he symbols used for these three D-type flip-flops are depicted in Fig. 17. Note that the
small triangle at the clock input depicts positive-edge triggering, and with an inversion
symbol represents negative-edge triggered. 'l'he JK type of flip-flop is a slightlier fancier
version of the D-type which we will discuss briefly later. Not shown in the figure are the
jam set and reset inputs, which are typically included in the flip-flop IC packages. In timing
diagrams, the clocks for edge-triggered devices are indicated by arrows, as shown in Fig.
18.

D Q

CLK

 D Q

CLK

 D Q

CLK

 Q

CLK

Figure 17: Symbols for D-type and JK flip-flops. Left to right: transparent D-type,

positiveedge triggered D-type, negative-edge triggered D-type, and positive-edge

triggered J K-type.

20

SUL SISL

 CLK CLK

Figure 18: Clocks in timing diagrams for positive-edge triggered (left) and negative-edge
triggered (right) devices.

For edge-triggered devices, the ambiguity regarding latch timing is reduced significantly. But

at high clock frequency it will become an issue again. trypically, the requirements are as follows:

 'l'he data input must be held for a time tsetup before the clock edge. trypically, tsetup 20 ns

or less.

 For some ICs, the data must be held for a short time thold after the clock edge. rrypically

thold 3 ns, but is zero for most newer ICs.

 'l'he output Q appears after a short propagation delay tprop of the signal through the
gates of the IC. trypically, tprop ns

l*Yom these considerations we see that for clocks of frequency much less than 1/ (Ions)
= 100 MHz, these issues will be unimportant, and we can effectively consider the
transitions to occur instantaneously in our timing diagrams.

21

4 Counters, Registers, and State Machines
We can now apply what we know about basic flip-flops circuit elements to develop new
functions: counters and registers. In doing so, we will introduce the "state machine", a
clocked sequential "processor". We will examine this latter topic in more detail in a few
weeks.

4.1 Divide by Two Counter

'Ithe edge-triggered D-type flip-flops which we introduced in the previous Section are quite
useful and versatile building blocks of sequential logic. A simple application is the divide-
by-2 counter shown in Fig. 19, along with the corresponding timing diagram.

 Q-OUT

Figure 19: Positive edge-triggered D-type flip-flop connected as divide-by-2 counter.

4.1.1 Using the JK Flip-flop

In Lab 4 you will build an asynchronous (ripple) counter using a sequence of cascaded JK
flip-flops, rather than the D-type which is used in our discussion below. For reference, the
JK truth table is given in Fig. 20. Note that there is no fundamental advantage to using the
JK instead of the D-type, only that the JK, with the additional J K 1 state, makes the divide-
by-2 function slightly simpler to implement.

 Q

CLK

1

o

o

1

o

1

o

1

1

con-

I

Figure 20: 'llhe JK Flip-flop.

22

4.2 Asynchronous Counter

Flip-flops can be connected in series, as shown in Fig. 21. 'llhe resulting outputs are given
in Fig. 22. (Note that labels in these two figures correspond when A 20 B 21 C 2 2 and D 23

. Hence, this is a 4-bit counter, with maximum count 24 — 15. It is clearly possible to
expand such a counter to an indefinite number of bits.

While asynchronous counters are easy to assemble, they have serious drawbacks for
some applications. In particular, the input must propogate through the entire chain of flip-
flops before the correct result is achieved. Eventually, at high input rate, the two ends of
the chain, representing the LSB and NTSB, can be processing different input pulses entirely
(Perhaps in lab you can see this effect on the oscilloscope with a very high input frequency.)
'l'he solution to this is the synchronous counter, which we will discuss below as an example
of a state machine.

IN

Figure 21: Asynchronous ("ripple") counter made from cascaded D-type flip-flops.

Figure 22: Waveforms generated by the ripple counter.

4.3 Registers
4.3.1 Basic Register

'Ithe figure below represents a 4-bit memory. We can think of it as 4 individual D-type flip-
flops. 'llhe important point about a data register of this type is that all of the inputs are
latched into memory synchronously by a single clock cycle.

 (23

23

 m

DO
CLK

Figure 23: 4-bit data register.

4.3.2 Shift Registers

'Ithe figure below is an example of a 4-bit shift register. tllhese configurations are quite
useful, particularly for transforming serial data to parallel, and parallel to serial. In the
circuit below, a pulse appearing at "serial in" would be shifted from the output of one
flipflop to the next on each clock cycle. Hence a serial bit pattern at the input (4 bits long
in this example) would appear as 4 parallel bits in the outputs Qo—Q3 after 4 clock cycles.
tl'his represents the serial-to-parallel case.

CLK

Figure 24: 4-bit shift register.

We will discuss several examples of shift registers a few lectures hence.

5 Analog/ Digital Conversion
In this section we discuss the important topic of analog to digital conversion (often written
A/D), and digital to analog conversion (D/A). On one hand, most electrical measurements
are intrinsically analog. take advantage of the great capabilities available for digital data
storage, processing, and computation, on the other hand, requires the conversion of analog
to digital. Hence, analog to digital (A/D) conversion techniques have become extremely
important. A great deal of technical effort has gone into producing A/D converters (ADCs)
which are fast, accurate, and cheap. D/A converters (DACs) are also very important. For
example, video monitors convert digital information generated by computers to analog
signals which are used to direct the electron beam at a specified portion of the monitor
screen. DACs are conceptually simpler than ADCs, although it is diffcult in practice to

SERIAL

IN

24

build a precise DAC. We will discuss D/A conversion before A/D. But first we go over
some underlying ideas.

5.1 A/D Resolution
First of all we should keep in mind that there are several different schemes for encoding
analog information as bits, depending upon what is required by a particular application.
One extreme is that of encoding the complete analog signal in as much detail as possible.
For example, a musical instrument produces an analog signal which is readily converted to
an analog electrical signal using a microphone. If this is to be recorded digitally, one
naturally would choose to digitize enough information so that when the recording is played
back, the resulting audio is not perceived to be significantly different from the original. In
this case the analog signal is a voltage which varies with time, V (t).

At any time to, V (to) can be sampled and converted to digital. tithe analog signal must
be sampled for a finite time, called the sampling time, At. One may guess that it is necessary
to sample the analog signal continuously, with no gaps between consecutive samples. tl'his
turns out to be overkill. 'Ithe Nyquist Theorem states that if the maximum frequency of
inerest in the analog input is fmax, then perfect reproduction only requires that the sampling
frequency fs,unp be slightly greater than twice fmax 'l'hat is,

 > 2fmax

For example, for audio signals the maximum frequency of interest is usually 20 kHz. In
this case the input analog must be sampled at a little over 40 kHz. In fact, 44 kHz is typically
used.

Alternatively, it might not be of interest to represent the entire analog input digitally.
Perhaps only one feature of the analog signal is useful. One example is "peak sensing,
where one samples and digitizes the input only at the instant where an instrument's output
achieves a maximum analog output. Or one may average ("integrate") an input signal over
some predefined time, retaining only the average value to be digitized.

For any of these sampling schemes, there remains the issue of how many bits are to be
used to describe the sampled signal V (to). 'Ithis is the question of A/D resolution. We need
a standard definition of resolution. Let's say, for example, that we choose to digitize the
input using 12 bits. 'I'llis means that we will try to match our analog input to 1 of 212 = 4096
possible levels. 'llhis is generally done by ascribing a number from 0 to 4095. So, assuming
our ADC works correctly, the digital estimate of the analog input can, at worst, be wrong
by the range of the LSD. On average, the error is half of this. 'Ithis defines the resolution.
Therefore, for our 12-bit example, the resolution is 1/(2 • 4096), or a little worse than
0.01%.

5.2 D/A Conversion
'llhe basic element of a DAC is the simplest analog divider: the resistor. First, we need to
review the two important properties of a,n operational amplifier ("op-amp") connected in
the inverting configuration. 'l'his is shown in Fig. 25. 'Ithe two important properties are

1. 'l'he input is effectively at ground. ("virtual ground")

2. 'l'he voltage gain is G V out /Vin —L/ RI. An equivalent statement is that for a current
at the — input of Iin Vin/R1, the output voltage is Vout GVin

25

—VinR2/R1. Sometimes this is written in the form Vout glin, where g is the
transconductance, and g —R2 in this case.

VIN
VOUT

Figure 25: Inverting op-amp configuration.

tl'he basic idea of most DACs is then made clear by the 4-bit example illustrated in Fig.
26. 'l'he input 4-bit digital signal defines the position of the switches labelled ao—ag. A
HIGH input bit would correspond to a switch connected to 1.0 V, whereas a LOW connects
to ground. tl'he configuration in the figure represents a binary input of 1010, or 1010. Since
the virtual ground keeps the op-amp input at ground, then for a switch connected to ground,
there can be no current flow. However, for switches connected to 1.0 V, the current
presented to the op-amp will be 1.0 V divided by the resistance of that leg. All legs with
HIGH switches then contribute some current. With the binary progression of resistance
values shown in the figure, the desired result is obtained. So for the example shown, the
total current to the op-amp is I 1.0/ R + 1.0/(4R) 5/(4R). tithe output voltage is

out -RI 5/4 1.25V

1510), we find Vout 15/8 V. A simple check of our

scheme shows that

as expected.

5.2.1 The R-2R Ladder

'llhis represents a rather minor point, although it is an interesting idea. 'llhe "R-2R ladder"
is of practical interest because it uses only two resistor values. Since it is difficult to
accurately fabricate resistors of arbitrary resistance, this is beneficial. 'l'he two resistances
of the R-2R

26

I.ov

VOUT

Figure 26: Example 4-bit DAC scheme.

are to be contrasted with the scheme represented by the circuit of Fig. 26, which employs
as many resistance values as there are bits. 'l'he idea behind the R-2R ladder hinges on
noticing the pattern of equivalences represented by Fig. 27, which can be used to replicate
an arbitrarily long ladder, and hence handle in arbitrary number of bits.

etc.

Figure 27: Principle of the R-2R ladder. 'l'he rightmost 2R resistor can be indefinitely
relicated with this equivalent circuit.

5.3 A/D Conversion
ADCs fall into 3 general types of technique:

(1) parallel encoding (flash): fast; limited accuracy

(2) successive approx. (feedback): med. fast; good accuracy

(3) single or double slope: slow; best potential accuracy

All of these techniques use a device known as a comparator. 'Ithis was discussed in
431/531 and in the text Chapters 4 and 9. Here, we will not discuss how comparators work,
but we do need to know what they do. 'Ithere are many makes of comparators. We will use
the model LM311 in lab. Figure 28 shows a comparator schematically. Internally, the
comparator can be thought of as a fast, very high-gain differential amplifier ("A") with

27

inputs "+" and We can put a "threshold voltage" at the input. Call it Vth. 'l'he circuit
input Vin is connected to the "+" input. When Vin > Vth, the comparator amplifies this
difference until the output reaches its largest possible value, which is determined by the
connection through the pull-up resistor. In the configuration shown here, as well as in Lab
5, the 1 kQ pull-up resistor is connected to +5 V. (Note that while +5 V is convenient for
many digital circuits, it is possible to use other values, such as +12 V.) When Vin < Vth,
the output swings the other way. 'I'llis level is usually determined by a connection to one
of the comparator pins. Here, it is ground.

Figure 28: Comparator.

Hence, the comparator represents a one-bit ADC. When the analog input exceeds the
pre-defined threshold, the output goes to digital HIGH, and when the input is less that the
threshold, the output goes to digital LOW.

5.3.1 Flash ADCs

In this scheme, the input is fanned out in parallel to several comparators with monotonically
increasing thresholds. 'Ithe pattern of comparator outputs is then analyzed by some
combinational logic (i.e. gates) to determine the output. 'I'llis technique is called flash (or
parallel) encoding. We exemplify the flash ADC scheme with the 2-bit ADC shown in Fig.
29. With n 2 bits, we need to define 271 4 possible states. 'l'hese states represent 4 separate
intervals. 'llhe analog input will fall into one of these intervals, and we will encode this
assignment with the 2 bits. Defining the boundaries of 27b intervals requires 27b — 1
comparators, with the threshold of each comparator set to the appropriate boundary voltage.

out

28

Figure 29: Schematic of a 2-bit flash ADC.

Let's go through a concrete example. Assume that our FADC circuit is designed to
handle analog voltage input signals in the range —0.5 to 3.5 V. 'Ithus, we have a 4-volt
total input range, with each interval spanning 1.0 V. 'l'herefore, each state will have a
maximum error, or resolution, of half the interval, or 0.5 V. ('Ithis is 4.0/(2 • Y), as we said
previously in our definition of resolution.) So an input which is in the range 2.5—3.5 V
will give a HIGH output only to comparator output C2, and our digital estimation will
correspond to 3.0 V. Hence, the threshold for the upper comparator (its input) should be set
at 2.5 V. Similarly for the remaining comparators we work out the values which are given
in the table below, where Vest is the digital estimate which corresponds to each state.

Vin range Comparator Threshold vest QIQ()

2.5-3.5 v

1.5-2.5 v

0.5-1.5 v

-030.5 v

 2.5 v

1.5 v

0.5 v

3.0 v

2.0 v

1.0 v

0.0 v

111

110

100

000

11

10

01

oo

Using Ohm's and Kirchoff's Laws, we arrive at the resistance ratios shown in Fig. 29 in
order to achieve the desired comparator thresholds. All that remains is to determine the gate
logic to convert the pattern of comparator outputs to a 2-bit digital output. Generalizing
from the above, we see that we have agreement with our previous statements: For n-bit
ADC, we require 27L — 1 comparators, and the resolution is AL/271+ 1 where AV is the full
range of analog input.

5.3.2 Successive Approximation ADCs

'llhis technique is illustrated by Fig. 30, which is also the one given for Lab 5. It uses a
digital feedback loop which iterates once on successive clock cycles. 'Ithe function of the

Vin

29

successive approximation register, or SAR, is to make a digital estimate of the analog input
based on the I-bit output of the comparator. 'Ithe current SAR estimate is then converted
back to analog by the DAC and compared with the input. 'Ithe cycle repeats until the "best"
estimate is achieved. When that occurs, this present best estimate is latched into the output
register (written into memory). By far the most common algorithm employed by SARs is
the binary search algorithm. 'l'his is the one used by the SAR in Lab 5, and is illustrated in
the example in the next secion.

Figure 30: Scheme for 8-bit successive approximation, or feedback, ADC.

5.3.3 Binary Search Example

In this example we will see the binary search algorithm in action. tithe binary search
algorithm can be summarized with the following words: Go to the midpoint of the
remaining nonexcluded range. In our example, we assume an 8-bit ADC with an expected
input voltage range of 0 to 10 V. So, naturally we choose the digital output to be 000000002
0 when

voltage step AV 10/255 39.22 m V.

Let the input voltage be some arbitrary value, 7.09 V. Now let's see how the algorithm
works. flYanslating the words for the algorithm, written above, to what the SAR actually
does is straightforward. tithe SAR always outputs one of two results, depending upon
whether the output from the comparator was TRUE or FALSE. More precisely, the
comparator will issue a HIGH if the current estimate is too small compared to the actual
input, or a LOW if it is too big. 'l'he SAR then does the following:

1. If estimate too small, add 1 to MSB—(n + 1) ; or

2. If estimate too big, subtract 1 from MSB—(n + 1) .

where n is the current clock cycle (see table).

Analog
In

Digital
Out

30

Vin(V)

10

8

7.09 v

6

4

2

time
(clock cycles)

Figure 31: Binary search algorithm in action. tithe analog input is 7.09 V. 'l'he digital
estimate for each clock cycle is represented by the solid line, and corresponds to the value
of Vest in the table below.

Clock Cycle, n SAR Bits SAR Bit Sum vest (V) comp. decision

31

1

2

3

4

5

6

7

10110111

10110011

10110101

10110100

127

127 64 =

191 -32

159 + 16

175 8 =

183 ¯ 4

179 2

181 1
191

159

175

183

179

181

180

4.98

7.49

6.24

6.86

7.18

7.02

7.10

7.06

too

small

too big

too

small

too

small

too big

too

small

too big

too

small

'l'he binary search algorithm is guaranteed to find the best possible estimate in a number
of clock cycles equal to the number of bits. In the example above, the best estimate was
actually determined on the seventh clock cycle (n 6). But since the input value was between
the digital estimates 180 and 181, there was no way for the ADC to determine which
estimate was closer to the actual input value (without adding one more bit). Since the input
can fall anywhere within 180 and 181 with equal likelihood, there should be no bias
introduced with this method due to systematically choosing a digital estimate which is too
small or too big. 'l'his is the desired outcome.

'llhe binary-search algorithm is fast and efficient, and also has the advantage that it
completes its estimation in a well determined number of clock cycles. Hence, the final
digital result can always be latched after n clock cycles, where n is the number of bits.
(Many ADCs actually wait one additional clock cycle in order to guarantee that bits have
settled, are latched properly, and are reset for the next input.

5.3.4 Single/Dua1 Slope ADCs

'Ithese techniques are slower than flash or successive approximation, but in principle can
be quite accurate. 'Ithe improved accuracy is for two reasons, because time, which is
robustly measured using digital techniques, is used as the measured quantity, and because
there is some immunity to noise pickup, especially for the dual slope case.

'Ithe single slope technique is illustrated in Fig. 32, which is taken from Figure 9.54 of
the text. 'Ithe device near the input and the capacitor is an FET' transistor which is used as
a switch. When the input to the FET' gate, which comes from the Q output of the D-type
flip-flop, is LOW, then the FET' is switched off, and it draws no current. However, when
Q goes HIGH, the FET' pulls the + input of the comparator to ground, and holds it there.
'l'he box marked "osc" represents a typical digital clock. 'l'he arrow within the circle
connected to +Vcc is the symbol for a "current source" , which means that its output is a
constant current, regardless of the impedance at its output (within reasonable bounds).

32

input

 during

 Figure 9.54. Sil

Figure 32: Scheme for

single-slope ADC, from

text.

'l'he process
begins when a rising-edge
signal is sent to the flip-
flop, for example from a debounced switch. Since the D input is HIGH, then Q goes
HIGH. Hence the counter, no longer being held at reset by the flip-flop, begins counting.
At the same time the FET' is switched off and a signal is sent to the — input of the
comparator. Now we must analyze the nature of this signal.

'llhe voltage across a capacitor Vcap, is related to its stored charge by V Q/C, where C
is the capacitance. Differentiating gives d Vc/dt I [C. Now, because of the current source,
the right-hand side of this equation is a constant. Finally, since one side of the capacitor is
at ground, then the comparator + input is just V . Hence, we can integrate our expression
over a time interval At to give:

V+ vcap — (1 /C)At

Since I //C is a known constant, this equation allows one to convert the 1/+ input to a time
At to be measured by the counter. 'Ithis linear relation between 1/+ (= Vcap) and At is
illustrated in the figure. 'llhe counter stops (is reset) and its final count stored in the register
when V+ becomes equal to Vim, thus changing the state of the comparator. 'l'his also resets
the flip-flop, thus returning the circuit to its initial state.

'llhe dual-slope ADCs work similarly, but with a two-step process. First, a capacitor is
charged for a fixed time T with a current source whose current is proportional to Vin, I
aVin, where a is the constant of proportionality. Hence, is proportional to T'. Vcap
aVinT/C. tithe capacitor is then discharged at constant current I/ and the time At to do so is
measured. 'Itherefore,

At [C/f'] [OT/C]

where 13 = 07/1/ is a known constant.

l'his technique has two advantages compared with single-slope. First, we see from the
equation above that the result is independent of C. 'Ithis is good, as precise capacitance
values are difficult to fabricate. Second, the integration of the input voltage in the charge-
up step allows 60 Hz pickup noise (or other periodic noise) to be averaged to zero.

this time

33

6 Counters, Registers, and State Machines Il
'llhe general scheme for a state machine is given in Fig. 33. It has n bits of memory, k
inputs, and m outputs. It consists of a synchronous data register (lower box) which stores
the machine's present state. A set of separate flip-flops can be used for this, as long as they
are clocked synchronously. 'Ithe logic in the upper box acts upon the current state, plus any
inputs, to produce the machine's next state, as well as any outputs. Upon each pulse of the
clock input CLK, the machine is moved from the present state to the next state. We will
introduce this topic using counters as examples, then moving to more general applications.
We will see, in fact, that the state machine prepresents a simple processor. 'l'he inputs can
be generalized to be the processor program and the logic might be replaced by a random-
access memory (RAM).

INPUTSOUTPUTS

BO-

Bm-1

Figure 33: General scheme for state machine.

'Ithe strategy for applying this scheme to a given problem consists of the following:

1. Identify the number of required states, C. 'l'he number of bits of memory (e.g. number
of flip-flops) required to specify the m states is at minimum n log2(m).

2. Make a state diagram which shows all states, inputs, and outputs.

3. Make a truth table for the logic section. 'Ithe table will have n + k inputs and n + m
outputs.

4. Implement the truth table using our combinational logic techniques.

CLK

34

6.1 State Machine Introduction: Synchronous Counters
Counters implemented as state machines are always synchronous, that is the entire circuit
is in phase with the clock. Recall that our previous "ripple" counters were asynchronous —
logic was initiated at different times throughout the circuit. Synchronous systems are
essential whenever a sequential system requires more than a very modest speed or
complexity.

6.1.1 Example: Up/down 2-bit Synchronous Counter

A 2-bit counter requires 4 states, with each state corresponding to one of the 4 possible 2-
bit numbers. Hence, 2 bits of memory are required. We will use 2 flip-flops (D-type) to
implement this. 'Ithe state diagram is given in Fig. 34. Each circle represents one of the
states, and the arrows represent a clock pulse which offers a transition to another state (or
possibly to remain at the present state). 'l'he 4 states are specified by the 2 bits of memory:
A 00, B 01, C 10, D 11. Note that we are free to label the states as we choose, as long as
they are uniquely specified. However, in this case it is easiest to choose labels which
correspond to our desired outputs, that is the 2-bit binary sequence 00, 01, 10, and 11.
Hence, these labels are equivalent to our desired outputs, call them QIQO, which are
available at each state. (Note that the lettered labels A—D are superfluous; they could be
omitted.)

Figure 34: State diagram for 2-bit up/down synchronous counter.

Our processor has one input bit u, which programs the up-counting (u 1) or
downcounting (u 0) functions. In this case, the state machine outputs are the two bits of the
present state, QIQo, so we do not reproduce them in our truth table. 'Ithe truth table for the
logic is below.

 Present State

QIQO

Next State
DIDO

35

1

1

O

o

o

A

B

D

A

D

c

oo
01
10
11
oo
11
10

01

B
c
D
A
D
c
B
A

01
10
11
oo
11
10

01

oo

We can now envoke the logic as usual. We have 2 "outputs", Do and DI, which are to
be evaluated separately from the truth table, or using a K-map, we see that

6.1.2 Example: Divide-by-Three Synchronous Counter

Our state machine is supposed to count input pulses (input at the CLK) and set an output
bit HIGH on every 3rd input pulse. Note that this could represent either a 2-bit (total)
counter, or more generally the 2 least-significant bits of a many-bit counter.

We require 3 states, therefore we need 2 bits of memory (2 D-type flip-flops, for

example).

Ithese 2 flip-flops can describe 4 states, so we will have one "unused" state. A state diagram
is shown in Fig. 35, with one way of labelling the states and output bit (called p) given.

Figure 35: State diagram for a divide-by-3 synchronous counter.

'l'he truth table for the combinational logic is below. It is important that the "extra state"
D 11 be given an exit path, otherwise your processor may end up there upon power-up and
remain stuck. ('llhis effect has probably come to your attention with the "frozen" computer,
which may require a reboot.) Also, note that we could have taken the output p from any of
the states A, B, or C.

Present State Next State Output

 QIQO DIDO

36

A

D

OO
01
10

11

B
c
A

A

01

10

oo

oo

What are the logic expressions for our 3 "outputs" of this truth table (DI, 1)2, and p) ?
How would this be implemented with D-type flip-flops and logic gates? With JK flip-flops
replacing the D-type?

37

7 Memories and Processors

7.1 Memory Terminology
We will not discuss the topic of data storage technologies per se. We are mostly interested
here in the question of how data storage can be effectively organized. 'llhe important
common element of the memories we will study is that they are random access memories,
or RAM. 'llhis means that each bit of information can be individually stored or retrieved —
with a valid input address. This is to be contrasted with sequential memories in which bits
must be stored or retrieved in a particular sequence, for example with data storage on
magnetic tape. Unfortunately the term RAM has come to have a more specific meaning: A
memory for which bits can both be easily stored or retrieved ("written to" or "read from").
Here is a rundown on some terms:

 RAM. In general, refers to random access memory. All of the devices we are considering to

be "memories" (RAM, ROM, etc.) are random access. tithe term RAM has also come to

mean memory which can be both easily written to and read from. tllhere are two main

technologies used for RAM:

1.) Static RAM. rrhese essentially are arrays of flip-flops. rrhey can be
fabricated in ICs as large arrays of tint flip-flops.) "SRAM" is intrisically somewhat
faster than dynamic RAM.

2.) Dynamic RAM. Uses capacitor arrays. Charge put on a capacitor will
produce a HIGH bit if its voltage V Q/C exceeds the threshold for the logic standard
in use. Since the charge will "leak" off through the resistance of the connections in
times of order 1 msec, the stored information must be continuously refreshed (hence
the term "dynamic"). Dynamic RAM can be fabricated with more bits per unit area
in an IC than static RAM. Hence, it is usually the technology of choice for most
large-scale IC memories.

 ROM. Read-only memory. Information cannot be easily stored. 'l'he idea is that bits
are initially defined and are never changed thereafter. As an example, it is generally
prudent for the instructions used to initialize a computer upon initial power-up to be
stored in ROM. 'l'he following terms refer to versions of ROM for which the stored
bits can be over-written, but not easily.

 PROM. Programmable ROM. Bits can be set on a programming bench by burning "fusible

links," or equivalent. 'l'his technology is also used for programmable array logic (PALs),

which we will briefly discuss in class.

 EPROM. ROM which can be erased using ultraviolet light.

 EEPROM. ROM which can be erased electronically.

A few other points of terminology:

 As you know, a bit is a binary digit. It represents the smallest element of information.

 A byte is 8 bits.

 A "K' of memory is 210 1024 bits (sometimes written KB). And a megabit (MB) is 1K x 1K

bits.

38

 RAM is organized into many data "words" of some prescribed length. For example, a RAM

which has 8K 8192 memory locations, with each location storing a data word of "width" 16

bits, would be referred to as a RAM of size 8K >< 16. 'Ithe total storage capacity of this

memory would therefore be 128KB, or simply a "128K" memory. (With modern very large

scale integration (VLSI) technology, a typical RAM IC might be 16 MB.

 Besides the memory "size," the other important specification for memory is the access time.

'I'llis is the time delay between when a valid request for stored data is sent to a memory and

when the corresponding bit of data appears at the output. A typical access time, depending

upon the technology of the memory, might be 10 ns.

7.2 Memory Configuration
As stated above, the term "memory" refers to a particular way of organizing information

by random access which is distinct from the less specific term "data storage." Figure 36
shows how an 8-bit RAM (8 x 1) is organized. ('Ithis is a very small memory, but illustrates
the concepts.) Our RAM consists of three main components: an 8-bit multiplexer, an 8-bit
demultiplexer, and 8 bits of storage. 'l'he storage shown consists of edge-triggered D-type
flip-flops. Hence, this is evidently a "static RAM." ('Ithere is no fundamental reason for
using edge-triggered flip-flops. 'l'hey could just as easily be level-triggered, like the simple
"clocked" S-R flip-flop of Fig. 14.)

write

enable

39

Figure 36: An 8 x 1 bit RAM.

Our example RANI has 6 external connections which are inputs (data in, write enable
(WE), 3-state enable (OK), and 3 address bits (A a2a1ao), and has one output connection
(data out), giving 7 external connections total, plus 2 for power/ground. write information
to the RAM, one would supply a valid address, for example A 101. 'llhe data bit to be
written to location 101 is to appear at the data input as either a logic HIGH or LOW signal.
And to enable the writing into this bit, the WE signal must be asserted. 'llhis then appears
at the Q5 output of the demultiplexer, and is passed on to the appropriate flip-flop, which
stores the input data bit and passes it on to the Q5 multiplexer input.

read data from our RAM, one asserts an address, so that the selected bit is sent to the
MUX output and then the 3-state buffer. 'llhe purpose of the 3-state buffer is to ensure that
no digital outputs are directly connected together, for example if our RAM output were
connected to a data "bus," which in turn was connected to several other devices. Recall that
the 3-state devices have outputs which are effectively disconnected if there is no enable
signal. So if the output data connection of our RAM is connected to a data bus, then the OE
signal must be coordinated with any other outputs also connected to the data bus. When it
is OK to read data from the RAM (all other output devices are disconnected from the bus),
the OE signal is asserted and the MUX output will appear at the RAM output.

One could of course also store the 8 bits of data directly to an 8-bit data register, rather
than using the RANI configuration outlined above. In this case, the number of external
connections is 17 (8 data in, 8 data out, and 1 clock), compared with the 7 of our RANI.
For a more realistic case where the number of bits of memory n is much larger than our
example, we generalize the above to arrive at 4+ log2 (n) external connections for the RAM,
compared with 1 + 2n for the standalone register. Obviously for large n, the register is
impractical, whereas the RAM remains reasonable. Actually, it is even somewhat better
than this for the RAM case, since the number of external connections does not grow with
the width of the stored data words. Hence, a RAM of size 1K >< 16 16 KB requires only
14 connections. 'Ithis is to be compared with 32,001 connections for the register. Note that
the RAM can only supply one bit at a time to the output. tllhis may seem like a handicap,
but is actually well matched to standard microprocessors.

7.3 A State Machine with Memory
For reference, our usual state machine configuration is shown again in Fig. 37. Now we consider

the use of a memory with a state machine, as depicted in Fig. 38. A random access memory is used

in place of the usual combinational logic. (A ROM has been specified, to emphasize that we are

not changing the memory — once it is defined initially, it is only read from. 'Ithe memory is used

to conveniently encode the connection between present and next states.
tro start with, let's assume a state machine with no external inputs or outputs. tllhen the

state machine's present state (PS) becomes an address which is input to the ROM. 'l'he data
word stored in the ROM at that address then corresponds to the next state (NS). 'Ithis
correspondence had been initially programmed into the ROM, just as the specific
combinational logic in our old state machine had to be pre-determined. So if the PS as
defined by the Q bits at the data register are, for example, 1001, then the ROM data word
at address 1001 will be the NS which is then passed back to the register. When there are
also external inputs, as there will be for most anything of interest, these are combined with
the PS bits to form a longer address for the ROM. Similarly, any external outputs are
combined with

40

NPUTSOUTPUTS
BO-Bm-1

CLK

Figure 37: 'Ithe standard state machine configuration.

the NS bits in the data word.
tl'his should become clear with an example.

7.3.1 Example: Divide by '2 or 3 Counter

We will use a state machine with ROM, as in Fig. 38, to design a counter which either
divides by 2 or by 3, depending upon the value of an external input bit p. 'l'his state machine
will require 3 states, therefore we will need to describe 4 states, using 2 bits. We can label
the states A 00, B 01, C 10, and D 11. Let p 0 be the divide by 2 case, and p 1 the divide
by 3. 'Ithe output bit r 1 when the present state is B. Otherwise r = 0. State D is normally
unused. 'Ithe truth table is below. 'Ithe student should draw the corresponding state diagram.

 Present State

QIQO

Next State
DIDO

o
o
o

1

1

1

1

01

10

11

01

10

11

A

A

B

c

B

A

A
A
B
c
D
A

01

oo

00

oo

01
10

11

oo

1

1

'l'his ROM requires 3 address bits (2 for PS and 1 for input bit p), which corresponds to

8 locations in memory. Each location has a data word which has length 3 bits (2 for NS and

41

4

State

Figure

38:

rroward a microprocessor: Replacing the combinational logic with a memory.

1 for the output bit r). 'Itherefore, the size of this memory is 8 x 3, or 24 total bits. A very
small ROM indeed. tl'he programming of the ROM is very straightforward and can be read
directly from the truth table above. We just need to set an encoding convention. Let the
addresses be encoded as pQIQo and the data words as DI Dor. For example, let's look at
the 5th row of the truth table. 'l'he address would be 100 and the data word at this address
would be 010. tithe remaining bits of the ROM would be programmed in the same way. So
one would initially "burn in" these bit patterns into the ROM and put it into the circuit.
That's all there is to it. Of course if one were careful not to overwrite the memory, or if an
evolving logical pattern were required, then a RAM could be used instead of the ROM.

7.3.2 Generalization to Microprocessors

A state machine with zero input bits can perform a counter-like function, but not more: its
next state is limited to be a function only of the present state. A single input bit can be used
to "program" the state machine to behave in one of two possible ways for each present state,
as we discussed, for example, with the up/down counter of Section 4.4.1, or the example in
the preceeding section. On the other hand, with n inputs, the machine can perform 27b

different operations. So, for example, with n 8 the machine can perform one of 256 different
operations on each clock cycle. 'Ithis tremendous potential and flexibility. 'llhe input bits
can themselves be sequenced — stored externally in a specific sequence which is then
applied step by step to the state machine inputs on successive clock cycles. Such a stored
sequence of operations is a program and the 256 operations represent the programming
operations. In Fig. 38 we have essentially configured a simple microprocessor. 'l'he inputs

CLK

Outputs-e—— External
Inputs

42

and outputs would need to be connected to buses (via 3-state buffers where appropriate),
which in turn are also connected to memories which store the program and any output or
input data. 'Ithe buses would also be connected to various input/output devices, mass
storage devices, etc.

